WELCOME TO THE Viewer How—To! (ewec MvMmcL2,

ViewerMCI, [device Sequencer][autostart][looping][noframe]intro.mid}






Please read through this introduction the first time.

If you’ve used this application before, you may click on the Contents or Search button above
to use this application. Click on the Continue button below to see the introduction.

{ewc vwrht2, TsTextButton, "Continue"[Macro=PanelD(qchPath,
‘Intro_2>IntroTxt',55)] [Font="Arial" /S12/B5] /W100 /H40/B1/D2}



To learn how to use a Viewer application, choose Viewer Help from the Help menu.  This
runs a separate instance of Viewer—exit it as though it was running alone.

There are no hot spots outside the table of contents.

{ewc vwrht2, TsTextButton, "Continue"[Macro=PanelD(qchPath,
‘Intro_3>IntroTxt',55)] [Font="Arial" /S12/B5] /W100 /H40/B1/D2}



The buttons embedded in the text, with labels such as ‘Figure 1-1°, display the indicated
figure in a secondary window. The window will always be positioned at the bottom right
corner. These buttons cannot be pressed through the keyboard.

{ewc vwrht2, TsTextButton, "Continue"[Macro=PanelD(qchPath,
‘Intro_4>IntroTxt',55)] [Font="Arial" /S12/B5] /W100 /H40/B1/D2}



The ‘Run Demo’ button is activated while you are looking at a How—To section. It runs the
Viewer application that is created by the section you’re looking at. The demo runs a separate
instance of Viewer — exit it as though it was running alone.

{ewc vwrht2, TsTextButton, "Continue"[Macro=PanelD(qchPath,
‘Intro_5>IntroTxt',55)] [Font="Arial" /S12/B5] /W100 /H40/B1/D2}



Be sure to check out the Search operation — especially Searching by Categories. This will
make a great reference tool!

The Troubleshooting search category will help you solve some of the problems you encounter
as you use Viewer in the future.

{ewc vwrht2, TsTextButton, "Continue"[Macro=PanelD(qchPath,
‘Intro_6>IntroTxt',55)] [Font="Arial" /S12/B5] /W100 /H40/B1/D2}



The timed appearance of the book cover and this introduction, the buttons embedded in the
text, and the custom About box are created using the TSTools addon. The windows containing
figures are positioned by a DLL written for this application. No other external functions are
used in this application — everything else you see is done with standard Viewer commands.

Click below to review or click on the Contents or Search button above to begin using this

application.

{ewc vwrht2, TsTextButton, "Review"[Macro=PanelD(qchPath,
‘Intro_2>IntroTxt',55)] [Font="Arial" /S12/B5] /W100 /H40/B1/D2}



Table of Contents

l'._.'i
I~
G - J

Click on a chapter to see that chapter’s contents
(Clicking on Appendix B, C, or D displays that topic directly)
Click on the page edges to browse through the table of contents



Chapter 1—What is Viewer?

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 2—Designing a Viewer Application

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 3—Creating a Simple Application

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 4—Adding Graphics

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 5—Adding Form and Function

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 6—Designing a User Interface

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 7—Using Multiple Files

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 8—Adding Sound to Your Application

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 9—Adding Animation and Movies

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 10—Programming with Viewer

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 11—Searching for Information

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Chapter 12—Putting It All Together

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



Appendix A—Installing Your Application

l'._.'i
I~
G - J

Click on an entry to display that section
Click on the page edges to browse through the table of contents



There are no more pages in this direction



This is a dummy topic that is never displayed. It has no context string or title. It contains a list

of the terms used in aliases, defined in the proper fields, so they will appear in the pull-down
lists.

{vfld137438953482 } maximum file size{vfld2850492484943872}
{vfld137438953482} maximum topics{v{ld2850492484943872}
{vfld137438953482 } maximum topic groups{vfld2850492484943872}
{vfld137438953482}RTF files{v{ld2850492484943872}
{vfld137438953482} Bullet{v{ld2850492484943872}
{vfld137438953482} Em dash{v{ld2850492484943872}
{vfld137438953482} En dash{vfld3413442438365184}
{vfld137438953484} M VB file not found{vfld3413442438365184}
{vfld137438953484 }search order{v{ld280933810831360}






Viewer is Microsoft’s multimedia authoring system. It is similar to the
familiar Windows Help system, with many enhancements. It is
designed primarily for electronic publishing tasks, but can do far more.

Viewer includes all of the WinHelp functional capabilities and adds
many powerful features, including opportunities for customizing the
application’s appearance and operation. Viewer can readily be used to
provide context help for a Windows application. WinHelp source files
can be compiled by Viewer with very few changes.

Viewer makes it easy to create applications. Most of the information
is entered by using Word for Windows in conjunction with Viewer
programs that let you conduct technical operations, such as multimedia
actions, through simple dialog boxes.

While primarily designed for electronic publishing, Viewer can also
be used to develop computer—based training and many other types of
applications. It is especially suitable for references such as
encyclopedias or the popular applications that concentrate on a group
of animals such as mammals, birds, or dinosaurs. Viewer can also
readily be used to produce more advanced multimedia applications
similar to Multimedia Beethoven. This application teaches
Beethoven’s Ninth Symphony by letting the user play segments of the
music while instructive text is displayed. It was one of the first high—
quality multimedia applications produced for Windows. Microsoft
used Viewer to produce its Bookshelf, Cinemania, and Encarta
applications. Viewer was also used to produce the Microsoft Developer
Network CDs, which distribute over 100,000 pages of technical
information to developers.

Viewer is a cross—platform system. The Viewer Toolkit can create
applications that run under Windows,

{vfld137438953482} Modular Windows {v{ld71919613918576640},
the Sony Multimedia CD—ROM Player, and the Tandy Video
Information System. Another company has developed programs that
extend this compatability to include Macintosh systems (Appendix D
contains contact information). Viewer’s Windows runtime programs
can be distributed without paying any royalties.

Version 2.0 of Viewer is a major revision of the original version.
The new features include an easy Windows—based authoring system,
completely configurable menus and buttons, window panes, additional
options in the search function, and a powerful multimedia command.

Viewer is designed especially to create applications that will be
distributed on a CD—ROM disk, while providing fast access to the
material on the disk.



1.1 What Can Viewer Do?
If you have used Windows Help, you’ve seen some of the basic
concepts that are used in Viewer. Viewer builds on these concepts to
provide tools that can produce applications that go far beyond simple
Help files. You select which of these features are available to the user
within a particular application, and control many aspects of the
appearance and operation of the selected features.

Viewer applications can present the user with a combination of text,
pictures, sounds, animations, and movies. Viewer applications offer the
following:

U Functions that make sophisticated
{vfld137438953482 } multimedia {v{ld2674570624499712}
events easy to use for both you and the user

U An extremely powerful {vfld137438953482} full-
text search {vfld2674570624499712} capability that you
can easily customize

u A
{vfld137438953482 }user interface {vfld267457062449971
2} that you can design, incorporating standard or custom
menus, buttons, and graphic elements that execute
commands when clicked

U A wide variety of display options, including master and
{vfld137438953482}secondary windows{vfld11132555231
232}, {vfld137438953482} panes{vfld11132555231232}
(sections of windows),

{vfld137438953482} nonscrolling regions{v{ld1113255523
1232}, and

{vfld137438953482} popup{vfld8453537434385252352}
windows. You can control the size and position of display
components or they can be determined automatically by
Viewer

U Many different ways to
{vfld137438953482}navigate {v{ld11132555231232}
through the material in the application, including text and
graphic hot spots, buttons that allow browsing through
related application sections, a history list that permits
returning to previous sections, and a
{vfld137438953482} keyword {vfld2674570624499712}
index

U The ability for users to print material from the application,
or copy it directly to other programs

U The ability for users to add personal notes and comments to
sections within the application

{vfld2305854554085785610} Navigation{vfld-



9079244204395200512}

A Viewer application is composed of a series of
{vfld2305856753109041162} topics{vfld2305847957016018944}. A
topic is the basic building block of a Viewer application. All of the
material in a Viewer application, including the
{vfld137438953482}table of contents{vfld7278097931641552896},
menus, and user instructions, is organized into topics. A topic can
contain any combination of text, pictures, animations, or movies. If a
topic is too big to display all at once, scroll bars are automatically
added to let the user see the rest of the material.

Viewer is a {v{ld2305856753109041162} hypertext{vfld-
9079251900976594944)} system. This means that you can refer to
related material in a way that lets users jump to the related topic by
clicking on special text. Users don’t have to be forced to follow rigid
paths between topics based on menus, but can wander from topic to
topic following their interests. You can provide as much, or as little, of
this freedom as appropriate or desired.

References to other topics are known as
{vfld2305856753109041162} hot spots{vfld-9079251900976594944,}.
A hot spot is a word, phrase, or picture that you marked in a special
way. When the user clicks on a hot spot, a specified different topic is
displayed, or a Viewer command is executed to perform some other
action you defined.

The general process of going from topic to topic is known as
{vtld2305856753109041162} navigation{vfld-
9079251900976594944)}. Because you may allow the user to follow an
unstructured path through the application’s material, you must help the
user avoid getting lost. One way to do this is to provide consistent
topic headings that help the user understand where the current topic
fits into the overall application. Viewer also provides the user with a
list that shows the titles of the last 40 topics displayed. The user can
return to any of these topics by double—clicking on the desired entry.

Locating Information
As an author, you can give the user four ways to locate information:
U You can define hot spots that form a system of
{vfld2305856753109041162} menus{vfld230584795701601
8944}. These are much like the table of contents in a book
or a list of subjects in an encyclopedia. The entries defined
as {vfld137438953482}hot spots{vfld2674570624499712}
display the selected topic when clicked. This works well if
the list of topics isn’t too long, and if the user can readily
identify which topic contains the desired material. Hot
spots can also be defined within topics that refer to related
topics
U You can combine related topics into
{vfld2305856753109041162} browse groups{vfld-



9079251900976594944}. The user can jump between topics
within a browse group by clicking on a button. For
example, the Viewer application version of this book is
organized with a topic for each section of each chapter. All
of the sections within each chapter are organized into a
browse group.

U You can mark selected terms as
{vfld2305856753109041162} keywords{vfld-
9079251900976594944}. The user can then display a list of
these keywords, and easily display any topic that contains a
selected keyword.

U The user can
{vfld2305856753109041162}search{vfld23058479570160
18944} the entire text of the application for any desired
word or phrase, and get a list of topics containing that term
within seconds. The topics can be displayed with a mouse
click. You can customize the search function to provide
{vfld137438953482} categories {vfld843883764252672} of
terms—for example, to distinguish between Washington
State and George Washington. The user can limit the search
to groups of topics you define.

Displaying Information
Viewer applications are displayed in a
{vtld137438953482} main window {v{ld11132555231232}, and can
also use one {vfld137438953482}secondary window {vfld-
7997830529422458880} at a time. You can set the size and position of
both windows, and the user can adjust the size and position.

You can divide each window into multiple
{vfld2305856753109041162} panes{vfld2305847957016018944} if
desired. There can only be one
{vfld137438953482} master pane{vfld2850492484943872}, which is
where topics are normally displayed. You can cause topics to be
displayed in any other pane, and can control the size and position of
each pane. The user cannot adjust panes. Panes are useful for
information that should remain visible along with the current topic,
such as user interface controls, menus, or pictures.

You can define a {vfld137438953482}non—
scrolling region {v{ld7956171150537523200} in topics that are
displayed in the master pane. This stays displayed as the user scrolls
through the remaining material in that topic. This is useful for headings
or user interface controls.
A hot spot can also cause a small window, known as a
{vfld2305856753109041162} popup{vfld-9079251900976594944}, to
be displayed on top of the normal window. A popup window can
contain text or pictures, and disappears when the user clicks anywhere



outside the popup. Popup windows are usually used to display
definitions or explanations, but can serve many purposes. Popup
windows can even contain other hot spots.

{vfld2305854554085785610} Multimedia{vfld-
9079244204395200512} and Pictures

Viewer makes it easy to include multimedia excitement in your
application. You can choose between two types of sound files—
{vfld137438953482} MIDI{v{ld11132555231232} files that play
music from a series of recorded notes or

{vfld137438953482} wave {vfld-7997830529422458880} files that
contain digital recordings of speech, sound effects, music, or any other
sounds. You can play movie files that are created from videocameras
or videotapes, or animations that are created on a computer.

Viewer makes it easy to control playing a multimedia file. You can
play the file automatically, or let the user start, pause, or stop the file.
A simple dialog box lets you choose a multimedia file and set some
basic options. Buttons bring up other dialog boxes that create a caption
or define buttons that let the user control playing the sound or movie.

Viewer makes it equally easy to make your pictures look their best.
You can use {vfld137438953482}256—color{vfld11132555231232}
pictures, and control how they’ll appear on {vfld137438953482} 16—
color{vfld11132555231232} systems. Viewer gives you an option that
handles this conversion automatically, with great results. You can use
pictures that are created in one video resolution, such as
{vfld137438953482} VGA {vfld11132555231232}, and be confident
they will display properly on other systems such as
{vfld137438953482} SVGA {v{ld7886646831289991168 }—without
doing anything special!

Limits

Viewer is designed to create large applications—in fact, these
applications are expected to be distributed on CD—ROM rather than
diskettes. The following limits will help you appreciate how large and
complex a Viewer application can be:

U A Viewer application file can be as large as 2
gigabytestiThe number of topics in an application is limited
only by disk space

512,000 topics can be indexed if you use topic groupsiiEach
RTF file can contain 32,767 topics

110,000 files can be stored in ~ BaggageiiThe stop file can
contain 1,024 words to be excluded from the full-text
indexiiUp to 4 billion aliases can be used

I {vfld137438953482} {v{ld2674570624499712}

Vs



{vild137438953482} {v{ld2674570624499712}

RRS"AjYP easy to control playing a multimedia file.
You can play the file automatically, or let the
user start, pause, or stop the file. A simple
dialog box lets you choose a multimedia file
and set some basic options. Buttons bring up
other dialog boxes that create a caption or
define buttons that let the user control playing
the sound or movie.Viewer makes it equally easy to
make your pictures look their best. You can use 256—
color{vfld137438953482} pictures, and control how they’ll
appear on {vfld7957860000397787136} 16—color

systems. Viewer gives you an option that handles this
conversion automatically, with great results. You can use
pictures that are created in one video resolution, such as U

Each topic can contain a total of 256
{vfld137438953482 } non—scrolling regions {vfld111325552
31232}, scrolling regions,
{vfld137438953482}panes{v{ld11132555231232}, and
{vfld137438953482 } popups{v{ld2674570624499712}

U Each application can contain 200
{vfld2345052143626}topic groups and word
wheelsii {vfld11132555231232} Each application can have
255
{vfld137438953482} keywords {v{ld2674570624499712}

U Each application can have 255
{vfld137438953482} windows{vfld2674570624499712}

U Each application can have 255
{vfld137438953482}panes {v{ld2674570624499712}

U Each application can have 255 {vfld137438953482} custom
popups{vfld2674570624499712}

{vfld137438953482} {v{ld280933810831360}

U Project Editor only supports a total of 153 windows, panes,
and popups. Any additional definitions must be manually
added to the MVP file

If your application can’t fit within these limits, it won’t be able to run
on anything but very specialized computers.



1.2 How Do | Use Viewer?
There are two basic parts to Viewer—an authoring system that you use
to create a Viewer application, and a runtime system that runs the
application. You distribute the runtime programs with your application.
Chapter 2 describes the authoring system and its use in more detail.
Follow a few general steps to create a Viewer application:

U Design the application function and appearance—decide
how you want to present information; select the types of
pictures, sounds, and movies you will use; decide how
users will locate information and navigate between topics;
and select the user interface.

U Design the details—divide the material into individual
displays, select groups of topics and design menus.

U Prepare the supporting files—purchase or create the
picture, sound, and movie files you will use. This includes
obtaining the right to use files you didn’t create. You may
use temporary placeholders as substitutes for some files, so
you aren’t held up while you locate all the files you need.

U Create the document file—create your text and the
commands needed to display pictures, play sounds or
movies, and perform other desired actions. This file is the
heart of your application. It is created using Microsoft’s
Word for Windows. One of the programs in the Viewer
authoring system, the Topic Editor, makes it easy to create
nearly all of the special entries that control your
application. It lets you enter most of the necessary
information through easily understood dialog boxes.

U Compile the files—execute the Viewer compiler to create a
Viewer application file from your document and supporting
files. This also creates a log file that lists any errors that
were found.

U Test—run the application, and see if it appears as you
intended.

U Distribute—prepare your files for distribution, including
creating the program that will install the files on the users’
systems.



1.3 How Can | Make Viewer Do Even More?
Viewer is designed to be extended through external programs in
several ways:

u

Functions in external libraries

({vfld137438953482} DLL {v{ld11132555231232}s) can be
defined and executed within Viewer just like internal
commands. This includes Windows
{vfld137438953482} AP1{v{ld2674570624499712}s (such
as MessageBox and sndPlaySound), commercial DLLs
(such as the addons on the enclosed CD), and custom—
written functions unique to your application.

The

{vtld137438953482}embedded window {v{ld42105836354
48823808} interface is well documented, which enables
you to use this technique to develop additional capabilities.
A sample program is provided with Viewer, to help you
understand the techniques involved.

The standard

{vfld137438953482}search {v{ld2674570624499712}
operation uses internal functions that are well documented,
so that you can develop customized search dialog boxes
and operations. A sample program is provided with Viewer
to help you understand the techniques involved.

An API function is provided that allows external programs
to start a Viewer session and issue commands to control
that session.

A programming interface is provided that allows a program
to be informed of actions taken by a Viewer application,
such as changing the size of a window, displaying a new
topic, or scrolling within a topic.

Most of these extension capabilities are used in the “How—To”
demonstrations in this book. They are also used by the add—on
software that is on the included CD-ROM disk, and described in
Appendix B.



1.4 Examples of Viewer Applications
One of the best ways to understand the capabilities of Viewer is to
examine some Viewer applications. Some of the applications described
in this section are available in local software stores or through mail
order distributors; others must be ordered from the developer; and
three are included on the enclosed CD-ROM disk.
u

fld2305847957016018954Bookshelf{v{ld140683371767
3984} °93 is produced by Microsoft. It is a multimedia
reference library that includes an encyclopedia, a
dictionary, a thesaurus, an almanac, an atlas, and two books
of quotations. The seven references have a combined total
of more than 150,000 entries. Readers can watch
animations and listen to narrations, quotations, and
pronunciations. Entries can be easily copied into other
Windows applications such as word processors or
spreadsheets. This package can be purchased through
software retail stores or directly from Microsoft.

U vfld2305847957016018954 ) Encarta{vfld-
0223358292959428608} is a multimedia version of the 29—
volume 1992 Funk & Wagnalls New Encycopedia, plus
more than 1,000 original articles. It is produced by
Microsoft. It includes animations, thousands of photos, and
hours of music and speech. There are more than 25,000
articles and 17,000 multimedia elements. Encarta includes
several unique features in its user interface, including
Timeline, Category Browser, and Research Wizard. This
package can be purchased through software retail stores or
directly from Microsoft.

vfld2305847957016018954}Cinemania{vfld26745706244
99712} is an interactive movie guide produced by
Microsoft. It lets you see capsule summaries, reviews,
photos, definitions of terms, and film histories, and hear
100 of the most famous lines. Users can locate movies
based on genre, actor, director, release date, star rating,
Academy Award, and MPAA rating. This package can be
purchased through software retail stores or directly from
Microsoft.

U The Microsoft
{v{ld137438953482} Developer Network{vfld9288133065
572352} CD is issued quarterly to distribute more than
100,000 pages of technical information to developers—
including reference books from all developer—related



software, the database of known bugs, workarounds and
technical tips, sample programs, technical articles, the
complete text of several years’ issues of the MS Systems
Journal magazine, and the complete text of a commercial
book. Users can obtain a list of materials that refer to an
area of interest within seconds—and can look at any of the
listed articles with a simple click of the mouse. This
product can only be obtained directly from Microsoft by
calling (800) 759-5474.

vfld2305847957016018954Gallery {v{ld26745706244997
12} is a Viewer demonstration package created by
Microsoft. It is included on the enclosed CD—ROM disk.
Gallery uses graphics for the user interface, and
demonstrates many of the abilities of Viewer. An icon to
run Gallery is created on your system when you run the
Viewer installation.

U ld2305847957016018954USA Tour{v{ld280933810831
360} is another demonstration package created by
Microsoft and distributed with Viewer. It provides an
outstanding demonstration of a custom user interface. It can
be found on the enclosed CD-ROM disk as \MVSAMPLE\
USA\USA.MVB.

U The {vfld137438953482} Gateway Mall {vfld-
9223091103043944448} is a multimedia buyers guide
showing part of Gateway 2000’s product line. It uses
sounds, animation, and high—quality pictures to describe
features of items such as tape drives, notebook computers,
and video boards. Figure 1-1 shows the introductory
window.

{ewc vwrht2, TsTextButton, "Figure
1i;21"[Macro=JI(" viewerht. mvb>SecWin', “figl 1")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

Figure 1-2 shows an example of product information. The
Gateway Mall CD is included with new Gateway 2000
systems that include CD drives. Future versions may be
available through other means as well.

{ewc vwrht2, TsTextButton, "Figure
11, 22"[Macro=JI(" viewerht. mvb>SecWin', figl 2'")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

U The {vfld137438953482} Merck Manual {vfld-



9223091103043944448} is a comprehensive database of
medical information for doctors, pharmacists, and other
medical professionals. It was developed by Keyboard
Publishing, which also provided many of the Viewer
extension software packages included with this book.
Figure 1-3 shows the results of a search operation in this
package.

{ewc vwrht2, TsTextButton, "Figure
1i; 23" [Macro=JI( viewerht.mvb>SecWin', "figl 3")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

The

{vtld137438953482}Hugo and Nebula Anthology {v{ld-
7998112004399169536} 1993, produced by ClariNet
Communications, contains the complete text of all the 1993
nominees for the top science fiction awards. It includes five
novels, nine novellas, nine novelettes, many short stories,
nominees for art awards, and a mass of other materials too
extensive to describe. Figure 1-4 shows the opening
screen and a custom menu that reflects the unique
composition of this work.

{ewc vwrht2, TsTextButton, "Figure
1i; 24" [Macro=JI( viewerht.mvb>SecWin', "figl 4")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

Figure 1-5 shows one of the menus, which lets the user
click on the spine of the desired book. This CD can be
purchased from Clarinet by calling (800) ORDER—
BOOKS.

{ewc vwrht2, TsTextButton, "Figure
11, 25" [Macro=JI( viewerht.mvb>SecWin', "figl 5")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

Microsoft Multimedia How—To has also been prepared as
an “electronic book™ using Viewer. It lets you search for
subjects, commands, or other terms used in the book, run
each of the How—To demonstrations, and print sections so
you can write on the steps as you follow them. Figures are
displayed in a secondary window when you click on the
appropriate button—this lets you move and resize them
alongside the text if you want. Search categories let you
locate references to internal and external commands,



Viewer terms, and other material. The electronic book is
designed to serve as a reference tool as you develop your
own applications. An icon to run this application is created
on your system when you run the Viewer How—To
installation. Figure 1-6 shows a typical screen in this
application.

{ewc vwrht2, TsTextButton, "Figure
lig /26" [Macro=JI( viewerht. mvb>SecWin', ‘figl 6")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}



ateway 2000 Buyers Guide

GATEWAY2000 |

PP A

LCONTINDE.. |




The Motebook Store

TDETAILS "H0W TO ORDER.

|
|
|

Product Details




=i Mernck Manual TextStack®

File Edil. Buowkinark Help Slacks

Contcnt: Indck faen Bk Hizkary Learch £ Tranzcnber

Ahrust

TextStack®

Major Sactions — Search

CANTECTIOJE 2IGEASE r3each by Wonl

- AMKURNCLOGY, ALLERG
L CARIICVAZCULAR DIZ |

- PULMQMNARY DISORJER

GARTIOIMT=STIMGAL Topic Groups:

CHEFAC AML EILIAH Y @ Al Topic Groups
CMUTHITOMAL ALY RIE | — N
CENDOCEIMNE JIS03CER ¢ Selected Topic Groups Immurology; Allcrgic Dizordoz
CHEMATOLOZY ARD 2 'D = Topic Onl [E L ardswarenlar | henrders

. MUSCULDSKELETAL urrenl Topic Only Pulnunay Disuieas

[<] Infectious Dizease

DM~ M Tk ikl —

—

+
—




i Hugo and Nebula Award Anthology 1993
File Edil. Buwkmark Help BRI
5 Hugo Movels

[ lugao Nowvellas

Hign Nmvelertrs

Hugao Short Stories

Mchula Novcllas
Nehnla Nnvelettes
Mehula Short Stories

Campbcl/l Nominces

é_'ELIEHi OMN BOOKS TO CONTINUE... -




i Hugo and Nebula Award Anthology 1993
File Edil Buwkmark Help Ficlivn Al Other
HContonts 0




|

kile LEdt Hookmark Help

Contents | Go Eack I Histlory | Search | %% I >F IHun Demu_

LILEL. ¥ELZUE IS W UZLIETILE L ) LUTLOTEEAEL L. 1012 LAl P DL I LLL LU LE

L ry
like Tiewe 6—1.

¥icwer Huer-To | 'l 2|

ki 1°F H—1

T s
w : [COMNFIG] - Conmfliguralivn Scripl
: LConfiguration Script:

Skd2Ch ozl
StddBulbars |

MNegsterlactive" rvbrrp2”, "Copelna", e -USEY
RegaeRavtiae["memas'. "MCIConmard ', ' USSS ")
q |FegsterRoLtinel mvitzyi2”. "earckDialog™ "L 3L
Hawr ] | CreateBolionlLin_ud’ B dp, Core )]

Edit Command... I | Faste Command...

.
S e Nl






Creating a multimedia application using the Microsoft Multimedia Viewer
package is very simple and straightforward. In this chapter you learn how to
create an application and are introduced to Viewer’s files and tools. You also
learn how to approach application design, and how to select the pictures,
sounds, and movies to include. Finally, you discover how to get more advice
and assistance if you have questions or problems while working with Viewer.

The first and most critical step is designing your application. Start by
deciding how to present information to your users and what types of pictures,
sounds, and movies to offer. Then decide how your users will locate the
information they want and how they will navigate between sections of your
application. Finally, decide on an interface that makes it easy for the users to
see and hear your material, locate specific information, and navigate from
place to place in your application.

After you complete your high—level design, it’s time to design the details.
Decide how to divide the material into individual displays, how to group
these displays, and all the other details of implementing your general design.

After you complete your design, prepare the files. This can include
purchasing some supporting files such as pictures, sounds, or movies. It also
includes obtaining publication rights to other files and creating some of your
own. You also prepare one or more document files that contain your text and
define the organization of all of your information. The Viewer compiler
uses the document and supporting files to produce your application.

As you complete portions of your document files, run the Viewer compiler
to combine all of the pieces into a Viewer application file. Review any error
messages provided by the compiler to signal problems in your material, and
test your compiled file by playing it with Viewer’s runtime program.

After your application is complete, prepare to distribute it to your users or
customers. This process is explained in appendix A.



21 How Should | Design the Application?
It is important to understand how a Viewer application is organized so you
can understand the design concepts. The basic building blocks of a Viewer
application are called {vfld2305858952132296714} topics{vfld-
9079242005371944960}. A topic is a segment of your application that is
displayed as a result of an action by the user. In the simplest cases, these are
the places in your application that the user can jump to.

Topics can contain any combination of text, pictures, controls, or other
visible parts of your application. Sounds or movies can be played
automatically when the topic is displayed, or when the user selects one of the
controls. Controls are portions of the text or pictures that cause a different
topic to be displayed in the master pane of the main window, in a different
pane of the main window, or in a different window.

All topics must have an internal name, known as a
{vf1d2305858952132296714} context string{vfld-9079242005371944960}.
The context string is used by a Viewer command to reference a specific topic
so that the command can display the intended topic. You learn how to create
topics in Chapter 3.

This book presents a very general introduction to designing Viewer
applications. The great variety of techniques that Viewer supports, combined
with the infinite range of possible applications, makes application design too
large a subject to cover here in depth. This book is intended to give you an
appreciation of the important components of design, and an understanding of
the techniques available. After reading this book, examine as many Viewer
applications as possible, and see if you can figure out how they produce the
effects that you like. Identify how the authors decided to handle each of the
design components described in this section. Look at other applications that
have something in common with your own, and try to decide how you could
produce the same effects in Viewer. Reading this book and studying actual
applications will give you many ideas to apply to the design of your own
application.

Decide How to Present Information
The first step in designing your application is deciding how you will present
information to your users. There are two aspects to consider: the user
interface, which consists of the menus, buttons, or other controls you will
present to allow a user to access certain information, and the display of the
actual information. These designs may not be fixed across your entire
application. You might use several types of controls in different parts of your
application, and you might present your information differently in each part.
Windows that provide information can also include controls.

You can use several different combinations of features:

U The primary portion of a topic display—the focus of interest—
can be either text or a picture. Topics that serve the same purpose
should ordinarily use the same design. This helps keep the
material clear to the user.

U More than one topic can be displayed at once within the main
window, using a feature known as
{vfld2305858952132296714} panes{vfld-
9079242005371944960}. Only one of these topics can be larger
than the display area; scroll bars to let the user display the



remaining material. The other topics are limited to the maximum
size defined for the panes where they are displayed.

U You can create panes that contain only a set of controls,
providing a custom user interface. These controls can change
based on what part of the application is being displayed, or they
can be fixed throughout. A pane can be located anywhere in the
window. There can even be more than one such pane, to place
controls in several areas of the window.

U You can keep all of your topics small, so that the user never sees
a scroll bar. This looks like a series of index cards (similar in
effect to the Apple Hypercard system).

U Additional topics can also be displayed in separate windows,
known as {vfld2305858952132296714}secondary windows{vfld-
9079242005371944960;. These windows can be moved and
resized by the user, just as any other window. They remain open
until closed by the user or by an explicit Viewer command, or
until the application is closed.

Select Types of Pictures, Sounds, and Movies

The second step is to determine what types of pictures, sounds, and movies
you want to present to the user. Viewer can support 16— and 256—color
pictures, Wave and MIDI sound files, video movies, and animation files. The
next section of this chapter, and the chapters that cover those specific
subjects, explain in detail the capabilities of Viewer and the effects your
decisions might have on the disk space your application requires.

Select Tools for Locating Information and Navigating

The third step is to decide what tools you will give the users to locate
information in your application, and how they will navigate between topics in
your application. Viewer places a number of extremely powerful functions at
your disposal:

U You can define {vfld2305858952132296714}hot spots{vild-
9079242005371944960} in your text or pictures to display
different topics. These can be used to create text or graphic
menus, or can be included within normal topics to provide
references to related material.

U You can combine selected topics into groups and allow users to
browse among the topics in each group.

U You can provide the ability to search all of the text in your
application for any word that appears, or restrict this search to
selected groups of topics.

U You can provide one or more lists of
{vfld137438953482 } keywords{v{ld4363420484763648}, which
you select, that can be used to select desired topics.

U You can allow the user to search for topics based on values in
{vfld137438953482} fields {v{ld-9006918320930160640} that
you define within the text. These fields can use numeric, date,
and era (such as 12,000 B.C.) forms.

Design the User Interface
The last step of the high—level design is to decide on a user interface. The



interface is simply the set of controls available to the user. It can include the
following:

U Some, none, or all of the standard menus and buttons

U Additional custom menu items or buttons

U Graphic controls

U Graphic or text hot spots within topics that include other material

U Custom—written Search dialogs
Design Implementation Details
Now it’s time to decide on the details that implement your design. You have
to decide what windows and panes will be needed, what material will be in
each topic, which topics will be grouped together, and which picture, sound,
and movie files you will use. A critical part of this is deciding which topics
will be referenced by which other topics. If you don’t design these paths
between topics in advance, you may create “orphan” topics that are not
referenced anywhere else, and cannot be reached by the user.

You should decide on the
{vfld137438953482} context string {vfld280933810831360} names of each
topic, since you will want to create hot spots and controls before all of the
topics have been defined. It would be difficult to go back and add all of the
hot spots and controls after all the topics have been defined. It’s much
easier to select the context strings as you design the application, then define
the hot spots as you write each topic. As you decide on these details, you
should record them in a document that you can refer to as you create your
application. This document should include the title and context string of each
topic, the context strings of other topics that this topic references, and which
other topics reference this one. This document should be in a file on your
computer, so that it’s easy to update and to print new copies as necessary.
Keep it at your fingertips as you work—it will become the “bible” of your
application development.
Decide on a standard way to name the context strings after you decide on

your overall structure. That helps assure that the names will be meaningful
and helps prevent accidental duplications.



2.2 Viewer’s Files
A Viewer project can include many different types of files. This section
divides the files into three simple categories to make them easier to
understand.

U First are the required files that you create. These are the files you
work with the most. They usually contain the most information,
and take the most time and effort to prepare.

U Second are the other files used to create an application. These
files are necessary, but you usually don’t have to do anything
with them. They are installed on your system as part of the
Viewer package. They provide functions that you can customize
if you want, but are usually left unchanged.

U Third are optional files that are supported by Viewer. These are
primarily the pictures, sounds, and movies that can make an
application exciting or provide the user with additional ways to
locate sections of your application easily.

This section also explains Viewer’s Baggage system for storing picture,
sound, and movie files, how to estimate the disk space required by an
application, and how to reduce the space needed.

Required Files Created by the Author
You create two primary files to set up an application: the project file, also
known as the MVP (Multimedia Viewer Project) file, and the document file,
also known as the RTF (Rich Text Format) file.
Each project has one
{vfld137438953482} M VP file{v{ld2334552915672301568}. It contains:
U Configuration information for the Viewer compiler
U Characteristics of the windows and panes you define
U  Alist of Viewer commands to be executed when your compiled

file is loaded

U Definitions of external functions (DLLSs) to be executed by your
application

U Definitions of fields and data types used to define Search
functions

U  Alist of files to be copied into the Baggage file section

The MVP file is created and updated by the Viewer Project Editor
program. The Viewer Topic Editor program also updates some information in
this file. Use of Project Editor and Topic Editor to control this file is
explained throughout this book. The Viewer documentation explains the
elements of the file.

The MVP file can be displayed by loading it into Notepad. Examine the
MVP file for your projects occasionally to become familiar with the contents
and format. This familiarity can be useful if you experience problems you
cannot explain, which could be caused by accidental damage to the file due
to mistakes using Project Editor or Topic Editor.

Most of the information in your application is in one or more document
(RTF) files. A project can have as many document files as desired. Document
files contain:q



Text to be displayed

Text and picture hot spots

Viewer commands to display pictures and play sounds or movies
Viewer commands to control the user interface

Definitions of context strings with their association to topics
Definitions of keywords to be used for searching for information
Association of topics into topic groups

c:cCc:cCc:CcC:CcC:C:C:

{vfld137438953482} Document files{vfld8449315309734592512} are
created by Microsoft Word for Windows (referred to as “Word” throughout
the remainder of this book). The contents of these files are explained in detail
throughout this book. You can break a project up into many separate
document files, if desired. This can be handy if the file becomes too large to
work with effectively; it also allows several authors to work on different parts
of a project simultaneously. All command and format information is stored as
character—string commands. Documentation describing the format of this file
is available, but you should never need to use it, because you will use Word
to create this file. You must use Word to be able to use Topic Editor, because
Topic Editor is designed specifically to work with Word. You can examine an
RTF file by loading it into Notepad, or loading it into Word and changing the
File Conversion to Text. Become familiar with the appearance of common
portions of an RTF file, such as footnotes and formatting information. If you
have problems that you can’t explain, they sometimes can be understood by
examining the relevant portion of the RTF file.

Viewer controls features of the application by taking advantage of features
of Word that aren’t needed, such as footnotes and selected format options.
The features of Word that are used don’t have any logical connection to the
associated Viewer features—they are chosen for the sake of convenience.
This can be confusing if you use the Word features directly. Fortunately, this
isn’t necessary—Topic Editor creates most of these entries for you. Still, it is
useful to understand the features and their characteristics so you can use them
effectively. Once you are familiar with them, you will find occasions where it
is easier to create them directly, without using Topic Editor. Viewer uses six
methods to control its features:

U {vfld137438953482}Hot spots{vfld4363420484763648} arc
defined through character formats. These are represented as
single or double underlined text immediately followed by hidden
text. Topic Editor creates the proper formatted entries.

U {vfld137438953482}Non-scrolling regions{vfld1113255523123
2} and {vfld137438953482}non—
wrapping text{vfld12232066859008} are defined through
paragraph formats—

{vfld137438953483 } Keep with Next{vfld12232066859008} and
{vfld137438953483} Keep Together{vfld4363420484763648},
respectively. You must set these formats yourself through Word’s
menus.

U Definitions that apply to topics, such as context strings, titles,
keywords, groups, and topic—entry commands, use special
{vfld137438953482} footnotes {v{ld3658633531359232}.
Instead of Word’s default—identifying footnotes with numbers—
these definitions use characters as footnote codes. For example,



titles are defined by footnotes with a dollar sign. Topic Editor
creates these footnotes.

U Features that must be placed within the text, but are too complex
to use special formats, use special sequences of characters known
as {vfld137438953482}RTF codes{v{ld4363420484763648}.
These are based on the codes that are used in the RTF files, but
are unique to Viewer. Viewer uses this method to define phrases
that are to be used in special ways during text search operations.

U {vfld137438953482} Embedded windows {vfld-
9006918320930160640} are located within topics. They are used
to display pictures, movies, animations, or custom—defined
images such as buttons or list boxes. They are defined using RTF
codes and specify the name of a program that will be executed to
display the requested material. Viewer comes with the programs
needed to display 16— or 256—color pictures, movies, and
animations. These embedded windows can be defined through
Topic Editor dialog boxes. Other embedded windows can be
created through Viewer add—on programs, and must be created
by typing in the necessary codes. The programs defined are
executed as soon as their portion of the topic is displayed, and
they are terminated when their portion is no longer displayed.

U Viewer also allows specified
{vfld137438953482} commands {v{ld-7998112004399169536}
to be executed under a number of conditions. These commands
can cause different topics to be displayed, display topics in
specified panes or windows, or change the size or position of
windows or panes. They can also execute Viewer functions
normally associated with menu items or buttons, such as printing
the current topic. External functions can also be executed as
Viewer commands. This includes multimedia functions, windows
API functions, and custom programs. These commands can be
executed when a window is opened (including the main
window); when a topic is displayed; or when a hot spot, menu
item, or button is clicked. Commands can be defined in each of
these events through Topic Editor. In addition, Topic Editor
assists in defining commands that are part of Viewer.

The result of your work is a file named projectname.MVB, created by the
Viewer compiler. The file extension stands for “Multimedia Viewer Book.”

Other Files Used to Create an Application
Viewer uses several standard files that control language—related functions:

U The {vfld137438953482} stop—word {vfld-
9223356093936173056} file specifies common words to be
excluded from the search index, such as and, or and the. The
English—language file is USA.STP.

U The {vfld137438953482}search—operator{vfld-
9223356093936173056} file defines the logical operator terms
that can be used in the search dialog box, such as and, or and
not. The English—language file is USA.OPR.

U The {vfld137438953482}character—



handling table {vfld280933810831360} defines how characters
are handled during indexing, such as converting upper case
letters to lower case or handling ligature characters such as .
The English—-language file is ANSIUSA.TBL.

These files are supplied with Viewer. They can be modified for your
application, although that is rarely required. Standard files are provided for
English, French, and German
{vfld137438953482}languages{vfld4081945508052992}. The use and
format of these files is explained in the Viewer documentation.

The Viewer compiler creates various temporary files that are deleted when
the compiler finishes. These files are created in the directory defined by an
entry in your computer’s AUTOEXEC.BAT file that looks like SET
TEMP=C\WINDOWS\TEMP. You should have similar SET statements for
both {vfld137438953484} TMP {vfld13331578486784} and
{vfld137438953484} TEMP{v{ld13331578486784} that point to an empty
directory. Many Windows programs, such as the Viewer compiler, use one or
both of these variables to determine where temporary files should be created.
These variables should never refer to your root directory, due to the limited
number of files that can be created there, or to a remote device on a
{vfld137438953484} LAN{v{ld-35184913254711296}, due to the
tremendous amount of information that must be written and read.

If you request that your application be compiled with
{vfld137438953484}high compression{vfld11132555231232}, the Viewer
compiler also creates a {vfld137438953482}phrase table{vfld-
9223356093936173056} in a file named projectname.PH. This file contains
intermediate information used in the compression process. Microsoft
recommends that this file be erased between compilations if you make
significant changes to the topic content. Reusing a PH file speeds up the
compilation greatly if you make few changes. You have to use the Windows
File Manager or some similar program to erase this file. Project Editor does
not have a function to do this.

The Viewer compiler also creates a file named projectname.LLOG,
containing messages describing any errors that were found during
compilation. The file is recreated each time your application is compiled.
Project Editor provides an option for displaying this file.

Optional File Types Supported by Viewer

You can create an {v{ld137438953482}alias file{vfld-
9223356093936173056} to define searchable data that is different from the
displayed text. This lets you display terms or numbers in ways that are easy
for the users to understand, and use the same information in a different
format to allow the user to search for it in a more general form. For example,
you might define “7/4/1776 as a searchable alias for the text “Independence
Day.” The use of aliases is explained in Chapter 11. This is a standard text
file, commonly named ALIAS.TXT or projectname TXT.

You will certainly want to include some optional files, such as pictures,
sound files, movies, and animation files. These files make your application
interesting and exciting!

Viewer supports several of the common formats for picture files—DIB,
BMP, and WMF. It does not support



{vfld137438953484}RIFF DIB{v{ld13331578486784} files that can be
created by some advanced painting programs. In addition, some programs
create {vfld137438953484}BMP {v{ld280933810831360} files in
nonstandard formats. The Viewer Convert utility and Windows Paintbrush
will usually convert such files to an acceptable form. Viewer also accepts a
special graphic format known as SHG. These are bitmap files that contain
one or more hot spot regions. These files are created by the Viewer
Segmented Hotspot Editor program, which is described in more detail in
section 2.4.

There are two formats for Windows—supported sound files—
{vfld137438953482} Wave{vfld11132555231232} and
{vfld137438953482} MIDI{vfld72057052872048640}. Wave files have the
file name extension WAV. They are digitized recordings of sounds, including
voices, noises, or music, captured through a microphone or other input
device. They can be quite large. MIDI files have file name extension MID.
They contain commands to music synthesizers, such as those found in sound
cards, so they can only play music or other standard sounds supported by
synthesizers. The quality of MIDI sound can be excellent, and the files are
usually quite small, but the user must have a sound card and driver software
installed to be able to play sound files. The use of sound files is explained in
detail in Chapter 8.

Viewer also supports any
{vfld137438953482}movie{vfld11132555231232} or
{vfld137438953482}animation{vfld11132555231232} files that have
Windows {vfld137438953482} MCI{v{ld1406833717673984} drivers
installed. The drivers needed for AVI movies are readily available from
Microsoft and can be distributed freely. Special packages of hardware and
software are required to create such files. Animation files can be created by
packages sold by several vendors. The most popular PC—based animation
packages are sold by AutoDesk and Gold Disk. Animation files produced by
these packages can be played by Viewer if you have the necessary MCI
drivers installed. These drivers would also have to be distributed with your
application. The use of movies and animation is explained in more detail in
Chapter 9.

The Viewer {vfld137438953482}Baggage{vfld-9078975914968088576}
File System

Viewer allows you to incorporate your picture, sound, and movie files right
into the compiled MVB file. This is known as storing those files in Viewer’s
Baggage section. Files are copied into Baggage by the Viewer compiler as a
result of listing the file names in the Baggage section of the MVP file. This
results in having a single data file installed on the user’s system, rather than a
large group of files.

The use of a single data file provides one vital benefit to both you and the
user—it assures the integrity of your application by making it impossible for
files to be erased or replaced, whether by accident or intent.

The {vfld137438953484}Baggage{vfld7882987656592752640} system
does not provide a directory structure—all files are referenced by their
names, in standard DOS format. To help make up for this, the file names are
case sensitive. That is, the files test.wav, TEST.WAYV, and teST.wav are
completely different and separate. If you want to include files from different



directories with identical names in your application, you can only distinguish
them by using different combinations of uppercase and lowercase letters in
the file names. The file names must be entered in exactly the same way in the
project file and in the command within the document file. Within the
document you indicate that a file is to be read from Baggage by preceding the
file name with an exclamation point—for example, !test.wav.

Topic Editor provides an option to store the selected file in the Baggage
section while defining the commands that use these files. This automatically
inserts the file name in the Baggage section of the project file and prefixes
the file name in the command with the necessary exclamation point.

It is important to understand that you can’t always put all of your files in
{vfld137438953484} Baggage{vfld13331578486784}. The program or
function being executed by Viewer to use the file must be written especially
to understand the exclamation point notation, and have special instructions to
read Baggage files. Not all Viewer functions have this capability. For
example, Viewer allows you to cause another program to be executed by
executing the function {v{ld137438953484} ExecProgram {vfld-
9223356093936173056} (‘programname.exe’, 0). The program to be
executed cannot be stored in Baggage. As a general rule, only the functions
unique to Viewer and that use picture, sound, or movie/animation files can
utilize Baggage. If Topic Editor does not provide the Baggage option for a
command, it’s pretty safe to assume that that command can’t use it, and that
any associated files must remain outside your MVB file.

You can have just some of your files included in Baggage—the use of this
feature is strictly optional. This reduces the benefit of Baggage, but it is
necessary sometimes.

Estimating Disk Space Requirements

During the development process, three groups of files require space on your
system. The first group is the source files—the document, picture, sound,
movie, and related files that you produce. The second group is the work files
used while your application is being compiled, and the third group is the
compiled MVB file. These sets of files do not all have to be located on the
same physical drive. In fact, your application may be compiled much faster if
the work files are on a separate drive. This can be very important if you are
compiling an extremely large application.

There is no fully reliable way to predict the size of your source files for
any given application. You have so many choices in the use of text, pictures,
and multimedia functions that no two authors are likely to produce similar—
sized files for similar applications. These choices are much of what makes
Viewer such a powerful authoring system!

The best way to estimate the size of your source files and resulting
compiled file is to actually produce a reasonable—sized portion of your
application, and develop an estimate from that. You must be sure that the
portion created is typical in its use of pictures and multimedia, or allow for
any differences in your estimate.

Microsoft has provided a guideline for estimating the size of the
temporary work files:

Multiply the number of words in your document file by 128.
Add 2 times the number of topic groups defined.



Add the total number of topics, divided by 4.

Microsoft also suggests that the compiled MVB file will be at least twice
the size of your document files, plus the size of your Baggage files.

For example, an application with 15,000 words in 100 topics with 12 topic
groups will require

15,000 x 128 + 12 x 2 + 100/ 4 = 1,920,049 bytes of disk space.

That’s over 1.8 megabytes. One author, developing an extremely large
application, estimated that the application would have about 10 million
words in 100,000 topics. This works out to about 1.3 gigabytes of disk space
required for temporary work files!

This large application is expected to have about 50 megabytes of
document files and 450 megabytes of Baggage files. This would result in a
compiled file of at least 550 megabytes. The combined requirement for
source files, work files, and compiled result is over 2 gigabytes!

Methods for Reducing the Size of Your MVB File

The easiest method for reducing the size of your MVB file is provided by
Viewer. You can specify, through Project Editor, that you want to
{vfld137438953482} compress {vfld7882987656592752640} your file when
it is compiled. You can choose no compression, medium compression, or
high compression. Compression affects only the text portion of your
application, not files included in Baggage. Medium compression reduces the
size of your file (other than Baggage) by 5-10 percent, and high compression
reduces the size by 35-50 percent. The higher degrees of compression cause
the time required to compile your application to increase. Most authors do
not compress their files until a project is nearly completed, to save time.
However, it is a good idea to perform compressed compiles occasionally
throughout project development to help estimate the size of the final file and
avoid last-minute surprises.

High compression compiles use a phrase table file (projectname.PH),
which is described earlier in section 2.2. This holds much of the information
used to compress the file. The compiler will reuse an existing phrase table if
it exists to speed up compilation. It must be erased before compiling if the
document text changes significantly, or the compression will be based on
obsolete information.

The size of your Baggage files can also be an important part of the size of
your MVB file, because they can be very large and they are not compressed
by the Viewer compiler. A single 320x200 bitmap with 256 colors requires
64,000 bytes. A wave sound file that plays for only a few seconds can occupy
250K-500K. It is important to estimate the amount of storage that might be
needed for such files while you are designing your application. One author
discovered that his planned application would require a number of full CD-
ROM disks because he planned to include very many large, high—quality
pictures. It would be impossible to produce, install, or use such an
application! He must reduce the number of pictures, their quality, or both.

Different picture file formats require far different amounts of storage. For
example, a 256—color bitmap requires twice the space of the same size 16—
color bitmap. Including both formats of a single picture increases the space
still further. A bitmap in Super VGA resolution is 1.5 times the size of the
same picture in VGA resolution. An image in 8514 resolution is 1.6 times the
size of the Super VGA picture! In general, greater degrees of picture quality



require greater amounts of disk space. It is vital that you understand the
effect of your choices, so you can make sure the quality is worth the impact.
This is especially critical if it affects the distribution of your application. It
could increase the number of diskettes needed, or force you to distribute your
application on a CD—ROM disk even though you didn’t want to limit your
market to users with CD drives.

There are a few options for reducing the size of picture files. Shrinking
these files can have a significant effect, because most applications will have a
large number of images.

One possibility is to use a drawing program, which creates Windows
Metafile (WMF) files, instead of a painting program which creates bitmap
(BMP) files. WMF files are much smaller than BMPs. Drawing programs
have different purposes and features, so they may not be suitable for your
purposes. Corel Draw is reported to be the only program able to convert
BMPs to WMFs, but it costs far too much for most people to buy just for that
purpose.

Another option is to load your BMP files into Viewer’s Segmented
Hotspot Editor utility (Shed2) and save them as SHG files without defining
any hot spots. The resulting files will normally be far smaller than the
original BMPs with no loss of quality. They can be used exactly as the BMPs
would have been in all Viewer commands. Many authors use this technique.

A third option is to use the Convert utility to convert BMP files into DIB
RLESs. These take even less space than SHGs, without any loss of quality.
RLE files also load faster and use less memory. Convert can process batches
of files together, which makes it easier to use than Shed2 for this purpose.

The last resort is to reduce the quality of the picture by reducing the
resolution or number of colors. BitEdit can convert 256—color pictures to
dithered 16—color pictures with a minimal loss of quality, while cutting the
size of the file in half. The resolution can be reduced in many painting
programs by loading and saving the file while running Windows in the
desired reduced resolution.

Similar format issues apply to sound files. If you want to play music, keep
in mind that a MIDI file requires much less space than a Wave file that plays
for the same length of time. Of course, a MIDI file won’t help if you want to
play recorded voices. Wave files can be recorded with different sampling
rates, which serves as the audible equivalent to changing the number of
colors in a picture—you can reduce the file size at the expense of reduced
quality. The type of sounds being recorded, and their purpose, can make all
the difference in such choices. Human spoken voices, for example, rarely
need high sampling rates. Most listeners would not detect any difference if
lower rates were used, which can make longer recordings practical. The
opposite extreme would be recordings of samples by symphony orchestras to
be heard by serious music buffs. This type of listener might be able to detect
the slightest imperfections in your recording. They would also be likely to
have the high—quality sound boards and faster computers needed to play files
created with high sampling rates accurately.

When considering movie and animation files, remember that the file size
is affected by the size and quality of the image and the number of frames per
second. Animation files, which are drawn on the computer, tend to require far
less space than true video movies—but you must sacrifice some detail in the
picture. The size of video movies can be reduced by using advanced



compression techniques, but these require special boards on the PCs used by
you and all users of the application. This is impractical unless you are
developing an application that will only be used within your company.



2.3 What Are the Authoring Tools?
Viewer includes two programs to simplify the authoring process—Project
Editor and Topic Editor. These programs make it practical for authors who
are not technical experts to create powerful and sophisticated Windows
multimedia applications. They simplify the technical details while permitting
you to manage these details to the degree desired.

The Viewer Project Editor

Project Editor, as its name implies, helps you manage the overall project,
which might include multiple document files and other components. Its
primary purpose is to allow you to manage your MVP file easily. Project
Editor is your entry point for creating the project and for each editing session.

Project Editor’s menu items let you

U Define the windows and panes you will use in your application
Define topic groups and the associated entry and exit commands
Define the copyright citations to be displayed
Select the icon to be displayed for your application
Define commands to be executed when your file is loaded
Define options controlling Search functions, such as data types
and keyword indexes
Set compiler options such as paths, compression, and CD—ROM
optimization
U Compile your application
U Review any error messages generated by the compiler
U Run Viewer to display the compiled file

c:.c:cCc:CcC:C:

Cc:

A short tour of some common Project Editor dialog boxes follows,
showing features that are used throughout the Viewer authoring system.
Figure 2—1 shows the main window of Project Editor. This is used to
maintain the list of document and Baggage files used by your application,
and to choose functions from the menus.

{ewc vwrht2, TsTextButton, "Figure
2i;21"[Macro=JI(" viewerht.mvb>SecWin', "fig2 1')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Figure 2-2 shows the choices available within Project Editor’s Section
menu. These are used to modify sections of the project file. You will use
some of these choices often. Figures 2—3 through 2—6 show dialog boxes
that are displayed after choosing items from the Section menu.

{ewc vwrht2, TsTextButton, "Figure
2i; 52" [Macro=JI(" viewerht.mvb>SecWin', "fig2 2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Figure 2—3 shows the Window Properties dialog box, which is used to
define characteristics of main or secondary windows. This is a typical dialog
box in the Viewer authoring system. It includes a check box, several fields



with pull-down lists of values that can be selected, and several fields that
must be entered by typing the desired values.

{ewc vwrht2, TsTextButton, "Figure
2i; 23"[Macro=JI('viewerht. mvb>SecWin', "fig2 3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Figure 2—4 shows the [CONFIG]—Configuration Script dialog box, which
is used to define commands to be executed when the application is loaded.
The Paste Command button provides a list of Viewer commands that can be
added to the script. The Edit Command button displays a dialog box tailored
to the selected command, with separate fields for entering each parameter.
Pull-down lists are provided for many fields to prevent misspelling or other
errors.

{ewc vwrht2, TsTextButton, "Figure
2i; 24" [Macro=JI("viewerht.mvb>SecWin', "fig2 4")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Figure 2—5 shows the [FTINDEX]—Data Types dialog box, which is used
to define data types and associated characteristics that control the Search
operation. Three fields, which require file names to be entered, have a box
with an ellipsis (...) after the field. Clicking on this box displays a file
selection dialog box that is very similar to the Windows standard File Open
dialog box. This dialog box allows the file name to be selected from the
actual contents of the disk to prevent misspelling or other errors.

{ewc vwrht2, TsTextButton, "Figure
2i; 25" [Macro=JI("viewerht. mvb>SecWin', "fig2 5")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Figure 2—6 shows the [GROUPS]—Groups dialog box, which is used to
define groups of topics. The New button is used to add a new group. Entry
and Exit scripts, containing commands to be executed when the group is
entered or exited, can be defined much like the CONFIG script shown in
Figure 2—4. Many common dialog boxes, such as those used to define scripts,
paste commands, or edit commands, are used throughout the Viewer
authoring system. This makes it easier for you to use the system by
reducing the number of components to be learned.

{ewc vwrht2, TsTextButton, "Figure
2i; 26" Macro=JI("viewerht. mvb>SecWin', "fig2 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Project Editor makes it easy to edit your document files or any of the files
listed in the Baggage section. If you double—click on one of these names,
Project Editor will start the program associated with that file’s extension and
open the file to be edited. This is usually the editor for that type of file. For
example, you can start Word and open a document by double—clicking on the



name of the RTF file. If the sound or movie file extensions are associated
with programs to play the files (such as MPlayer) instead of editor programs,
you should change those associations. That can be done easily through the
Windows File Manager.

The Viewer Topic Editor
Topics are the primary building blocks of your document files. A topic
represents a section of text, pictures, hot spots, and multimedia displays.

Topic Editor is used to help you define topics, build commands, and use
special—purpose formatting in your document files. It provides menus and
special dialog boxes to make this process as simple as possible. These dialog
boxes use information from your project file to allow many choices to be
made by selecting an entry from a list. This eliminates many opportunities for
typographical errors that occur when users must type in their choices.

Project Editor starts both Topic Editor and Word when you double—click
on the name of a document file. You invoke Topic Editor through a hot key
which you define in Project Editor. Topic Editor starts by presenting you with
a list of commands or operations available. Figure 2—7 shows the first part of
this list. The How—Tos in this book demonstrate many of these commands
and operations, and give you the background needed to understand most of
the others. All of the commands and operations are described in the Viewer
documentation.

{ewc vwrht2, TsTextButton, "Figure
2i; 2 7"[Macro=JI("viewerht. mvb>SecWin', "fig2 7")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Once you select the desired function, you are presented with one or more
dialog boxes where you select the appropriate options or enter necessary
values. A short tour of some common Topic Editor dialog boxes follows,
showing features that are used throughout the Viewer authoring system. The
meaning of the options shown in these dialog boxes are demonstrated in the
How-Tos in this book.

Figure 2—8 shows the dialog box used to define the characteristics of a text
hot spot. This is typical of the dialog boxes displayed after a command is
chosen in the New Viewer Element dialog box. The elements of the
command or operation are listed on the left, with one element selected. The
right side is tailored to the selected element, showing the appropriate fields
and options. This dialog box uses radio buttons, text boxes, and a pull-down
list. Pull-down lists in Topic Editor often reflect components that were
defined in Project Editor, such as the names of windows or topic groups.

{ewc vwrht2, TsTextButton, "Figure
21; 28" [Macro=JI(" viewerht.mvb>SecWin', "fig2 8')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Figure 2-9 shows the dialog box that is displayed when you choose
Hidden Text is Command(s) in the dialog box shown in Figure 2—8. The
fields on the right side are changed to show a command script with Edit
Command and Paste Command buttons. These buttons display the same



dialog boxes as their Project Editor counterparts seen in Figure 2—4.

{ewc vwrht2, TsTextButton, "Figure
2i; 29" [Macro=JI(" viewerht.mvb>SecWin', "fig2 9")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Figure 2—10 shows the dialog box that is displayed when you click on an
Edit Command button. It shows the name of the command being edited and
the fields required by that command. Pull-down lists are provided where
appropriate.

{ewc vwrht2, TsTextButton, "Figure
2i;210"[Macro=JI(" viewerht.mvb>SecWin', ‘fig2 10")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Figure 2—11 shows the Multimedia Options dialog box that is displayed
when you choose the Multimedia item from the New Viewer Element dialog
box shown in Figure 2—7. The options available through this dialog box allow
you to specify playing any file supported by the Windows Multimedia
Command Interface (MCI), including Wave and MIDI sound files, AVI
movies, and animation files. This dialog box lets you specify standard or
customized buttons to be displayed that let the user start, stop, rewind, and
otherwise control the file playback. This complex and vital subject, which
requires a full chapter in the Viewer Authoring Guide, can be controlled
through this dialog box.

{ewc vwrht2, TsTextButton, "Figure
21 211"[Macro=JI(" viewerht. mvb>SecWin', ‘fig2 11")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Topic Editor inserts the appropriate command, or sets the appropriate
formatting options, in your Word document when you click on OK to accept
the values you specified. In some cases it also updates the project file. For
example, Topic Editor lets you specify that a multimedia file you selected to
play should be stored in Baggage. If you check that option, Topic Editor adds
the name of that file to the Baggage section of your MVP file.

If you select the text of a previously created Viewer command and invoke
Topic Editor, it bypasses the initial window and displays the appropriate
dialog box to edit that command. That makes it easy for you to revise
commands later on. If you select an entire topic, Topic Editor displays a list
of all the commands and lets you edit any or all of them.



2.4 What are the Support Tools?
Brief summaries of the functions of Viewer’s useful utilities follow. All of
these programs are described in detail in Viewer’s documentation.

Bitmap Editor ({vfld137438953482}BitEdit{vfld18013857343602688})
BitEdit, as you can see from its name, is designed to help you edit bitmap
picture files. It contains standard painting tools, as does Windows Paintbrush,
but is designed to supplement, rather than replace, standard painting
programs. Its biggest strength is its ability to work in tandem with the Palette
Editor to adjust the palette used by a picture. Figure 2—12 shows the BitEdit
window and floating control bar, with a picture file loaded and ready to be
edited.

{ewc vwrht2, TsTextButton, "Figure
21 212" [Macro=JI(" viewerht.mvb>SecWin', ‘fig2 12")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

BitEdit is capable of reading a large number of file formats, including
many that cannot be used by Viewer. This allows it to convert files to
acceptable formats while adjusting the colors, palette or other characteristics.
BitEdit can also write files that Viewer cannot accept, such as Apple PICT
and Microsoft RLE DIB files.

BitEdit fully supports 16— and 256—color (4— and 8-bit) pictures. True—
color images (with 65,536 or 16.7 million colors) are converted to 256 colors
when they are loaded.

Palette Editor ({vfld137438953482}PalEdit{vfld-9078975914968088576})
If your Windows system is running in 256—color mode, that means that it can
display 256 of the 65,536 possible colors at one time. The programs in use
select which of those possible colors will be used. There is one active palette
at all times, containing the set of up to 256 colors that can be used at that
moment. That palette applies to all visible windows.

Bitmap pictures and video images contain their own palettes, representing
the colors used in those files. When the images in these files are displayed,
the palette becomes the active palette for the entire display. All other
windows are redrawn using the nearest colors that are present in the new
palette. This can cause dramatic and unexpected results if there are no similar
colors! Undesirable results can also occur if you display two images at once
that use different palettes.

The Palette Editor allows you to adjust palettes, and copy a palette from
one image to another, to prevent or minimize such problems. It allows you to
control the color changes to minimize the visual impact. This can be far
better than letting the software on your users’ systems select the colors!

The Palette Editor can work in conjunction with the Viewer Bitmap Editor
as shown in Figure 2—13. This is often the most useful and powerful way to
use the Palette Editor.

{ewc vwrht2, TsTextButton, "Figure
2i;'213"[Macro=JI( viewerht. mvb>SecWin', ‘fig2 13")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



Wave File Editor
({vfld137438953482}WaveEdit{vfld18013857343602688})

The Wave File Editor allows you to create a new Wave sound file, edit an
existing file, or copy sounds between files. Portions of a recording can be cut,
copied, or combined (mixed). Periods of silence can be inserted, selections
can be faded up or down, and the volume can be changed.

This utility also allows the sample size or frequency of a file to be
reduced, shrinking the file at the expense of a reduction in the quality of the
sound. The difference may not be apparent to the listener if the original
recording used the highest sampling level.

The Wave contents are displayed as a graphic showing the sound volume
over time, as shown in Figure 2—14.

{ewc vwrht2, TsTextButton, "Figure
2i;'214"[Macro=JI( viewerht.mvb>SecWin', 'fig2 14")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

File Conversion ({vfld137438953482}Convert{vfid-
9078975914968088576})
This utility allows you to convert unsupported sound, picture, and palette
files to formats that can be used by Viewer. Both Wave and MIDI sound file
formats can be converted. Files can also be converted to some unsupported
formats, such as Microsoft RLE DIB, if this is needed.

The main window for the Viewer Convert utility is shown in Figure 2—15.

{ewc vwrht2, TsTextButton, "Figure
2i;215"[Macro=JI( viewerht. mvb>SecWin', ‘fig2 15")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Segmented Hot spot Editor
({vfld137438953482}Shed2{vfld18013857343602688})

Shed2 (shown in Figure 2—-16) is designed to allow you to define multiple hot
spot regions within a single picture. It provides a simple method for selecting
and defining the action to be taken for each individual hot spot region. The
updated file is saved with a SHG extension. These files can be displayed by
the Viewer commands, but they are not supported by other programs.

The picture used in an existing SHG file can be replaced by a new version
without redefining all of the hot spots. This was not supported in earlier
versions of Shed, used with Viewer 1.0 and the Windows Help system.

The picture should be displayed with a caption or associated text that will
help inform the user of the picture’s purpose. The only visual clue the user of
your application sees to recognize the existence and location of these hot
spots is the appearance of the cursor. The cursor changes to a pointing finger
while over one of the hot spot regions, just as it does for other hot spots.

{ewc vwrht2, TsTextButton, "Figure
2i;'16"[Macro=JI("viewerht. mvb>SecWin', ‘fig2 16")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



2.5 Tips and Tricks

= The Viewer compiler requires that you have a local hard drive on your
computer. A diskless system on a
{vfld137438953484} LAN {v{ld4926370438184960} cannot be used.

= The compiler work files are placed in the drive and directory pointed to
by your SET TEMP parameter (See Other Files Used to Create an
Application, in section 2.2). This should never point to a remote drive on
a LAN—this can cause extremely long compile times.



Viewer Project Editor - GALLERY .MYP
E“E Edit Section Compile Help

ErEEDEEEEIREE

| e

RTF ] Baggage ]

g, rif

layoLit. rtf
rornedia. rtf
changing. rtf
ook Lap i
gamples.itf




[ mu:ux-'lng rtf

layoLit. rtf
rornedia. rtf
changing. rtf
ook Lap i
gamples.itf

Baggage

Window Definitions...

Comments...
[OPTIONS] - Title Options...
[OPTIONS] - Compiler Options...

[BUILDTAGS] - Build Tags...
[CONFIG] - Configuration Script...
[FTINDEX] - Data Types...
[GROUPS] - Groups...
[KEYINDEX] - Keyword Indexes...
[SEARCHDLG] - Search Dialog...
MAWHEEL] - Word Wheels...

Alias File...




= YWindow Properties

Window NHame: |Sal]¥

R

Left: |41 Width:

Background Color: :B [¥ Use Default Color

B ackground Picture: |

Window Caption: |.-5'-.I:u:|ut Gallery

Initial State: | Maormal

Stay On Top: |N|:|
Minimize with MAIN: o

(el el L]

Coordinate System: | Abzolute |_I

Panes.___ | Preview On Help

Master Pane




[CONFIG] - Configuration Script
Configuration Script:

Std20menus(]
Std20B uttamnzl]

RegizterRouting] ' mvbmp2”, "CoppBmp"’, "w=U55"]
ReqisterRoutineg] myvmci2"’, "MCICommand”’, "L555"]

ReqisterR outing myvftzui2”, "SearchDialog®, "15U"]

Edit Command. .. Paste Command. ..




= [FTINDEX] - Data Types

Search Data Types:

Data Type Humber: 1].4

[0 | [ Cancel_|
- Cancel
DLL Filename: I

| evbrkr2.dil
DLL Boutine Mame:
| FBreakisords |

Stop-Word List Filename:

| -]

Character Tablez Filename:

| -]

Comment:

Delete H |rea|<.f3-.nd5tem'w'l:urds to uze word stemming | Help




= [GROUPS] - Groups

T opic Groups:
Hame: 1].4

layout_browse o walk_browse [ Searchable
" Cancel

mulbimedia_browse
looking_up_information_bro
read_me_first_browse
mioving_between_topics_br
cugtamizing_vieswer_brows
gtandard_wi |Br-:uwse seguence for Gallery walk,

Comment:

Delete M | Entry Script._. Exit Script._.




= MNew Yiewer Element

Select item to insert:

Context string [# footnote]

Topic title [$ footnote)

Topic-entiy command [! footnote]
Topic groupsz [+ footnote]

Build tags [* footnote]

Keywords [K footnote]

Hot zpot [text]

Hot zpot [picture]

Picture [using bmx]

Picture [using ew> with MYBMP2)
Multimedia [using ew with MYMCIZ]
Embedded pane {ewX}

Search data type {dtppe}

Search field {vild}

Search field with data type {vfldH{dtype}
Search alias {alias}

1].4 Cancel Help




= Yiewer Topic Editor - GALLERY .MVYP H

Yiewer Elements:

Hidden Textiz: & Jump O Command(z]

Context String:

| jurmnp_ar_commatd |
Window:

| | [2]

MYB Filename:
| |

Hot Spot Formatting
Ci'Mone
@ Underlined and Colored

1].4 Cancel | Help About___




Yiewer Elements:

Yiewer Topic Editor - GALLERY .MVYP

|H|:ut SEDI: ‘hot sil:ut bext’ Hidden Textis: (O Jump ® Command(s)

Commands [one per line):

«[] |+

« |

-

| Edit Command. ..

Pazte Command...

"Hot Spot Formatting
! Hone

@ Underlined and Colored

{118 Cancel |
—

Help

About___




= Edit Command

Edit Command: CreateButtan

ButtonlD: "Eh_:ttu:-r'ul[il'

ButtonCaption: | ‘ButtonCaption'

Command: | "Cormmand'

0K | Cancel

ButtonlD: Specifies the identifier for the button




= Multimedia Options

" Media " Playback Options |

MCI -...-.,.-',3-.,.-.3&.,|_4.;|i.;. | E EE— [ Looping

Filename: [ Auto-Start
| -- Lo P [T Share As:

[ Store File in Baggage |

"Position — | [ Range — " Controller
Track #  Miliseconds

Left Start: | | | | [X Show Controller
Right End: | | | |

Text-Aligned [X Play Entire File

| Layout._. | Edit Sections.__ | E dit Controller._.

| Cancel




BitEdit - BOAT_LIT.BMP [~ |-
| File Edit Selection Options Help

e
A
T
&
]
B
2




Filr

Piir | 14y

File Edid DMalctte Effcets Help

[aete Jce




: i _
| File Edit Effects View Help

« |

In  Zoom  Oub o008 kit/22 kHz

L] L) yoegsamples  SeleotStan [0
[Play ][50 | [Rec] 134k SelectSize [0 |




Convert
Help

- Source
Type:

Microsoft Windows DIB E
File[s):

CAMYPUBKITAMYSAMPLEAGALLERY™ Add
CAMYPUBKITAMYSAMPLEAGALLERY™ —

Bemove

- Destination

Type: Extension:
|Microsoft RIFF RLE DIB (%]  |rdi

Dir:  CAMYPUBEITAMYTOOLS

Convert




—| Hulspul Edilur

File Ldt Window Help

CHAP4 LE.HMP

Yiewer 2.0 PTE

Multrredia Wicae 2.0

Wiewner AU _ampilz

i ] -

(=h & G

PalE dit Coneert izwer 2.0 AP Compiler

2 B # =
Conlext Stlingzl

Conmor b utmedia G alarw

Guide

Iupznrs Lithrning Twpe: Attribute: E

Hotgpot [d: Hotzpol &

" Bounding Box

Lelt: @ Top: |30

Lok |

Right: Boltom:[H1

| Cancel |

[1d:4atzpot 4] Drvis Besduma] Tope30 Botored _efi:237 Right:31.2]






This chapter teaches you the common operations necessary to create a
Viewer application using the major components of the Viewer authoring
system—Project Editor and Topic Editor. These programs work together to
make it easy for you to use most of the features of Viewer even if you aren’t
a technical wizard. They let you concentrate on being an author—creating
the text, sound, and images that make up your application—without having
to get involved in the details of how it works.

If you are already using Viewer, you should skim through this chapter
even if most of the material is already familiar to you. Some of the tips and
suggestions may be new to you.

If you are new to Viewer, but have created Windows Help files, you
should read this more carefully. Even though many of the technical details
are the same, the differences are vital. You’ll be impressed by how easy the
Viewer authoring system is to use—even if you have used one of the
powerful Help authoring packages.

If this is your introduction to Viewer, and you haven’t created Help files,
you need to study this material carefully. This chapter provides the
foundation that the following chapters build on.

This chapter describes the initial configuration of Viewer, and some
customizing you may want to do in Word for Windows. It also explains some
procedures and documentation techniques that will help you avoid problems
later on. It covers virtually everything required to use Viewer as an
application Help system instead of WinHelp.

This chapter is designed for you to work through each of the How-Tos in
order. They all use the same files in the same directory, and each one adds to
the results of the previous section. The files that result from each section are
included on the enclosed CD-ROM in individual directories to let you
compare your results. These files could also be used to provide the proper
starting point if you decide to skip some sections.



3.1 Howdoll ...

Start a New Project?

Complexity: EASY

Problem
I’m ready to start developing a new application in Viewer. How do I start?

Technique

First, you use the Windows File Manager to set up a useful directory
structure for the files you create in this How—To. This standard structure is
repeated in all of the other How—Tos in this book. It is also used on the
enclosed CD-ROM, which makes it easier for you to compare your results to
mine.

If this is your first application, you need to set some configuration
preferences in Project Editor. Then you use Project Editor to create your
project file (MVP file). You won’t be setting any options or definitions yet,
other than the name of your text file.

The files created in this How—To may be found on the enclosed CD-ROM
disk in the VIEWERHT\HOWTOS\CHAP3\CHAP3 1 subdirectory.

Steps

1. As explained in Chapter 2, your first step must be designing your
application. If you don’t start off with a plan for your user interface,
window layout, actions, topic grouping, searching, and all the other parts
of your application, you end up redoing your work many times. Not only
do you waste a lot of your own time, but the end result isn’t nearly as
good either. Assume that all of the planning has taken place. Later
material helps you understand how to do the planning for your own
projects.

Create the directories where you store the files for this How—To:
2. Start File Manager, and select your root directory.

3. Choose Create Directory from the File menu.

4. Enter VIEWERHT as the name of the high—level directory where you
hold all of these How—Tos. Click on OK.

5. Select the VIEWERHT directory.
Choose Create Directory from the File menu again.

7. Enter CHAP3 as the name of the directory for this How—To. In all later
chapters, you use the chapter and section numbers to name the directories
where you create the files for the How—Tos. Each directory at this level
contains the project file and compiled Viewer file for the corresponding
How-To.

8. Click on OK.

9. Select the How—To directory, CHAP3.

10. Choose Create Directory from the File menu once again.

11. Enter TEXT as the name of the directory where you store your document
files. Click on OK.



12.

13.

Repeat steps 9 through 11, creating the following subdirectories for your
How—To: SOUNDS, PICTURES, and MOVIES. These are where you
store your sound files, picture files, and movie or animation files. Figure
3—1 shows the tree structure you should have.

{ewc vwrht2, TsTextButton, "Figure
3i;21"[Macro=JI(" viewerht.mvb>SecWin', "fig3 1")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Close the File Manager, and start Project Editor.

Now make sure Project Editor is configured properly:

14.

15.

16.

17.

If you haven’t done this yet, choose Preferences from the Edit menu to
display the Preferences dialog box.

Make sure the paths shown for Word for Windows and the Viewer
compiler are correct. Change them if necessary.

Set the {vfld137438953482}hotkey {vfld-9223348397354778624} you
want to activate Topic Editor. I suggest following the Microsoft
recommendation of [CTRL]-[T]. The completed dialog box should look
like Figure 3-2.

{ewc vwrht2, TsTextButton, "Figure
3i; 2" [Macro=JI(" viewerht.mvb>SecWin', "fig3 2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to save these values. You don’t have to do this again unless
you want to change one of the choices.

Now create the initial project file:

18.
19.

20.

Choose Save As from the File menu.
Select the subdirectory you created for this How—To A\VIEWERHT\
CHAP3).

Enter the How—To name, CHAP3, as your file name. The MVP extension
is added if you leave it off. Click on OK.

Next create the text file:

21.

22.

23.

Be sure the RTF file folder tab is on top. If not, click on it to bring it to
the top.

Choose Insert Line from the Edit menu. The insertion point appears in
the edit line.

Type TEXT\CHAP3.RTF and press [Enter] or click on the box containing
the “X”. The completed window should look like Figure 3-3.

{ewc vwrht2, TsTextButton, "Figure
3i;23"[Macro=JI(" viewerht.mvb>SecWin', "fig3 3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



24. Choose Save from the File menu to save the information in your project
file.

How It Works

Each project should have its own directory, with standard subdirectories for
the different types of files. It’s a good idea to always create each of these
subdirectories, even if you don’t need them all. This consistency costs you
almost nothing in time, effort, or disk space, but it helps you avoid problems
later if you decide to include a file that you hadn’t planned for.

You have to specify the text subdirectory with the name of your RTF file,
such as TEXT\CHAP3.RTF, for Project Editor to create the file in the right
place. Don’t specify the name of the project directory—all paths are
considered to be relative to the project directory. The project directory is
always the directory where the project MVP file is located. You select this
directory when you do your first Save As in Project Editor.

Project Editor is the master control point of the Viewer authoring process.
As you will find in the following How—Tos, you always start from there. You
should explore the menu items and see if you can anticipate what they do. Be
sure your project file is saved first, and don’t save any changes you make
while experimenting.

Comment
You create the text file in the next How—To, before creating the first topic.
Project Editor has standard default values for most of the options you
could select. You see the effect of those if you examine your CHAP3.MVP
file in Notepad. This file is formatted just like a standard Windows INI file. It
is divided into sections, with the names of each section enclosed in square
brackets. Within each section are individual parameters followed by an equal
sign and the assigned value. You rarely need to work with this file directly,
but you should become familiar with its appearance. It helps you understand
how the system is working, which can help you to make the best use of
Viewer.



3.2 Howdoll ...

Create a Contents Topic?
Complexity: EASY

Problem
I need to begin creating my document file by setting up a table of contents for
my application.

Technique

You use Project Editor, Topic Editor, and Word for Windows any time you
are working with your text file. Project Editor and Topic Editor let you define
the technical information easily, through dialog boxes.

The table of contents in a Viewer application serves the same purpose as
the table of contents in a book. It provides a list of the subjects and a way to
find each of them. Books print the page number for each subject so the reader
can go to the desired page. Viewer applications define the subject names as
hot spots, so the user can go to a subject by clicking on its entry in the table.
You create such hot spot entries for each subject.

Before you can create the table of contents, you need to know how the
application will be organized. (How else would you know what to put in the
table?) You also need to know what names, known as
{vfld2305858952132296714 } context strings{vfld-9079242005371944960},
to assign for Viewer to use to refer to each topic. You use those names to tell
Viewer which topic to display when the user clicks on a hotspot.

You usually need to know the context strings for topics before you’ve
created the topics themselves. That’s true in this case—you use context
strings in the table of contents. The easiest way to do this is to develop your
own naming convention, and to keep a list of the topics you plan to create
with their context strings and where these context strings are referred to. A
common naming standard is simple: ctx_ (for “context”) followed by an
abbreviated topic title. You can use any system you want. Viewer doesn’t
care about upper— or lowercase letters in a context string—it considers Abc,
ABC and abc as the same.

The files created in this How—To may be found on the enclosed CD-ROM
disk in the VIEWERHT\HOWTOS\CHAP3\CHAP3 2 subdirectory. This
How—To builds on the file created in How—To 3.1, located on your hard disk
in subdirectory VIEWERHT\CHAP3.

Steps

Design and plan your table of contents:

1. You need to know the name of each subject you want to include and how
you want the subjects to appear. Should some be indented, showing
subject groupings? Should they be numbered? For this How—To, use the
descriptions as shown in Table 3—1.

2. You also need to identify which topic to display for each subject listed in
the contents, and the context string for each of those topics. For this
How—To use part of the outline for chapters 2 and 3 of this book.



Table 3—-1 Planned Topics and Context Strings

How Should I Design the Application?
What Files Can Be Used?

What Are the Authoring Tools?

What Are the Support Tools?

Creating a Simple Application

Introduction

Start a New Project

Create a Contents Topic

Create Additional Topics

Create a Popup Topic

Create Searchable Keywords
Keep the Table of Contents Visible
Tips and Tricks

Description Context String
Designing a Viewer Application ctx chap 2
Introduction ctx_2 intro

ctx_2 design
ctx_2 files
ctx_2 authoring
ctx_2 support
ctx_chap 3
ctx 3 intro
ctx_3 project
ctx_3 contents
ctx 3 addl
ctx_3 popup
ctx 3 keywords
ctx_3 visible
ctx 3 tips

Usually you would prepare your directories and files next, but in this
chapter continue to use the the directories and files from the previous
section.

Use the File Manager to copy the CHAP3.ICO file from the
VIEWERHT\HOWTOS\CHAP3\CHAP3 2\PICTURES directory on the
enclosed CD-ROM to the VIEWERHT\CHAP3\PICTURES subdirectory
on your hard drive.

Start Project Editor, and open your project file, \VIEWERHT\CHAP3\
CHAP3.MVP.

Now you’re ready to start creating the text file and topic:

6.

10.

11.

Double—click on the text file name. This is how you indicate that you
want to edit the contents of a file. Because this file does not exist, Project
Editor displays a message box saying “RTF file C\VIEWERHT\CHAP3\
CHAP3.RTF does not exist. Create it?”

Click on the Yes button.

Project Editor starts Word for Windows. If Word doesn’t start, your entry
for the Word path in the Edit Preferences dialog box is probably
incorrect. Fix it and try these steps again.

Word displays the Convert File dialog box, showing that the selected file
is in Rich Text Format (RTF). Click on the OK button.

Your document appears. So far, it is completely empty. Let’s do
something about that!

Before you start entering any text, click on the paragraph symbol, also
known as a carriage return symbol , at the right—hand end of the Word
ruler. This causes all {vfld137438953482}hidden text{vfld-
353212526965555201}, blanks, and control codes to be displayed.



It is usually much easier to create your document with these codes
visible. You can click on that symbol again any time you want to see how
your document looks without codes.

The only time it’s easier to work with this option off is when you use
tabs to line up text that includes hot spots. Because hot spots include
hidden text, they can throw off the apparent effect of tabs.

12. Use the hotkey you selected earlier to bring up Topic Editor. This
displays the New Viewer Element window shown in Figure 3—4, which
lists the commands you may use.

{ewc vwrht2, TsTextButton, "Figure
3i; 24" [Macro=JI(" viewerht.mvb>SecWin', "fig3_4")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

13. Select Topic (Page break and # footnotes) and click on OK. This displays
the Viewer Topic Editor window. The left side lists the elements of the
selected command, and the right side shows information about the
selected element.

14. Enter the desired context string for this topic as ctx_contents. The
completed dialog box should look like Figure 3-5.

{ewc vwrht2, TsTextButton, "Figure
3i; 25" [Macro=JI(" viewerht.mvb>SecWin', "fig3 5")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

15. Click on OK.

16. Notice that a hard page break was inserted above your footnote code,
even though this is the beginning of the document. That break is not
needed, and can cause confusion later. Delete it now.

17. Now use your hotkey to bring up Topic Editor again, and select the Topic
Title ($ Footnote) entry.

18. Enter Table of Contents as the title, then click on OK.

19. Your document should now show two footnote codes: #and $ .

20. Type in your topic heading as Contents. Format this word with a larger
than normal font, and use boldface to make it stand out.

21. Next create the first hot spot. Drop down a few lines and type in the text
for the first entry:

Designing a Viewer Application

22. Select the text you just typed in, and bring up Topic Editor with your
hotkey. See Figure 3—6.

23. Notice that Figure 3—6 shows a much different list of commands. This list
is shown when you select text before you bring up the Editor. In this case
you want the first entry, Hot spot (text), which is already selected.



24.

25.

26.
27.
28.
29.

30.

31.

32.

33.

34.

35.

36.
37.
38.

39.

{ewc vwrht2, TsTextButton, "Figure
3i; /26"[Macro=JI("viewerht. mvb>SecWin', "fig3 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to display the Viewer Topic Editor window shown in Figure
3-7.

{ewc vwrht2, TsTextButton, "Figure
3i; 2 7"[Macro=JI(" viewerht.mvb>SecWin', "fig3 7")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

When the hot spot text element is selected, this window shows a choice
of Hot Spot Type. Leave it as Normal.

Select the Jump to element to display the hot spot options.
Enter the context string for this entry as ctx_chap_2.
Leave the Window and MVB Filename entries blank.

Leave the Formatting option at the default value of Underlined and
Colored. This produces the standard appearance. The result should look
like Figure 3-8.

{ewc vwrht2, TsTextButton, "Figure
3i; 8" [Macro=JI(" viewerht.mvb>SecWin', "fig3 8")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return to Word.

Without moving the insertion point, choose Character from the Format
menu and look at the current character formatting options. You see that
Hidden is selected.

Turn off Hidden and click on OK. If you do not do this, the carriage
return and text you are about to enter will be invisible!

Now enter the rest of the hot spots chosen in step 2. Type in the text, and
create the hot spots.

When you are done, your document should look like Figure 3-9.

{ewc vwrht2, TsTextButton, "Figure
31 29" [Macro=JI(" viewerht.mvb>SecWin', "fig3 9")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Now that you have completed your changes to the document, save your
file and exit Word. Choose Save As from the File menu.

Select Rich Text Format (*.RTF) under Save File as Type.
Click on OK.

Choose Exit from the File Menu or double—click on the Windows control
menu box to exit Word.

When the message box “Do you want to save changes to CHAP3.RTF”



appears, you must click on No. If you click on Yes, Word saves your
document in its DOC format using your

{vfld137438953484} RTF file{v{ld8§749649109884862464} name. This
format cannot be used by the Viewer compiler; if you click on Yes by
accident, error messages will appear when you compile. If you click on
Yes, additional dialog boxes are displayed that let you correct this
mistake.

Next define the context string of your Contents topic:

40.

41.

42.

43.

44,

45.

46.

47.

You should be back in Project Editor. If not, switch to it by holding
[CTRL] and pressing [TAB] until Project Editor appears.

Choose Title Options from the Section menu and enter the context string
of your Contents topic as ctx_contents.

In the same dialog box, you can attach an icon to this application. Click
on the box with the ellipsis (...) after the Icon Filename field to display
the Icon File dialog box, which looks and works just like the standard
File Open dialog box. Select the PICTURES\CHAP3.ICO file, then click
on OK. The completed dialog box should look like Figure 3—10. Click on
OK to return to Project Editor’s main window.

{ewc vwrht2, TsTextButton, "Figure
3i;210"[Macro=JI(" viewerht.mvb>SecWin', fig3 10")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Now you can compile the application. Choose Build from the Compile
menu.

Because you just changed the project file, before compiling Viewer asks
“Save changes to CHAP3.MVP before starting compiler?” Click on Yes.

The compiler window shows a progress meter bar, error messages, and a
description of the current activity while it works, as shown in Figure 3—
11. The handle next to the project name turns while the compiler is
running.

{ewc vwrht2, TsTextButton, "Figure
3i;211"[Macro=JI(" viewerht.mvb>SecWin', "fig3 11")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

The error messages report that the context strings in your hot spots have
not been defined. In this case you already know that, so it’s OK. You can
examine the error messages by choosing Display Error Log from the
Compile menu.

Now test your application by choosing Run Viewer on CHAP3.MVB
from the File menu. Your window should look like Figure 3—12.

{ewc vwrht2, TsTextButton, "Figure
3i 212" [Macro=JI(" viewerht.mvb>SecWin', fig3 12")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



48. Minimize the window to an icon—you see the new icon associated with
this file.

How It Works

Project Editor creates an RTF file if one doesn’t exist when you try to edit it.
The advantage to this is that Project Editor always starts Word with the name
of your file. If the file already exists, Word just loads it and proceeds. When
you save the file, Word already has the right file name. This doesn’t work
nearly as cleanly if the file doesn’t exist when Word is started.

Topic Editor displays an appropriate list of commands in the New Viewer
Element window based on whether or not any text is selected. If you select an
existing command or hot spot, Topic Editor bypasses the New Viewer
Element display and goes directly to the Topic Editor window, where you can
edit your previous choices.

The Topic Editor window always lists the elements for the selected
command on the left, and options for the selected element on the right. An
Options button is provided if a complete separate dialog box is used to
configure an element. The selected text, such as when defining a hot spot,
cannot be changed in this window. It can only be changed in Word.

A standard text hot spot has a very simple structure, as you saw in this
How—To. The text that is displayed in the runtime application is formatted
with a double underline. It is followed, without any spaces between, by the
context string of the topic that should be displayed if the user clicks on this
hot spot. The context string is formatted as hidden text. If you wanted to, you
could create these easily without using Topic Editor by entering the desired
text with the proper character format directly into your document. Topic
Editor makes it easier to create these and reduces the chance of errors, so you
should use Topic Editor unless you have a very good reason to enter context
strings directly.

Your document must be saved in Rich Text Format (RTF) to be usable by
the compiler. Word always saves in DOC format if you use the File Save
menu item. This is why you must use the Save As item, and specify the RTF
format. When you exit Word, it asks if you want to save your file because
you didn’t use the standard Save command. If you click the Yes button, Word
will resave your file in DOC format, but using your RTF file name.

If you try to test any of your hot spots, you get an error message because
the referenced context strings don’t exist yet. You create those topics and
context strings in the next How—To.

Comment

Planning and documenting the technical details of your project, such as the
context strings, is more important than may be apparent to you at this stage.
A few important points to understand:

U You are often creating topics, and creating hot spot references to
those topics, at much different times. The only way to assure that you
always use the right context string is to build a list of your topics and
context strings.

U The compiler reports context strings used in hot spots that are not



defined. It does not report undefined context strings used in
commands, or topics that are never referenced. Most important, it
cannot detect when you use the context string for the wrong topic in
a hot spot. Good documentation can help prevent such problems.

U Context strings must be unique within a project. Remember that
Viewer ignores the case of your string,.

When your file is loaded, Viewer displays the first topic in the file unless
you specify a contents topic through the Title Options choice of Project
Editor’s Section menu. Setting the contents topic also enables the Contents
button on the Viewer user interface to display the right topic.

You delete the unnecessary hard page break at the beginning of the
document because Viewer reports most errors with the relative
{vfld137438953484 }topic number{vfld-9006918320930160640}. That extra
page break would result in an extra topic to the compiler. This is likely to
throw you off when looking at your error log: “What do you mean, error in
Topic 2? I only created one topic!” You can avoid the extra page break by
selecting Context String ($ footnote) for the first topic.

One common cause of problems is letting the hidden character formatting
used in a hot spot remain in effect through following carriage returns or text
(see steps 34 and 35). Hidden
{vfld137438953484} carriage returns {vfld72057052872048640} are reported
by the compiler, and then ignored. The following text appears on the same
line. Hidden carriage returns are not apparent while in Word—you have to
mark the carriage return symbol and bring up the Format Character dialog
box to see them. Hidden text is apparent from the dotted underline while in
Word.

Another common cause of problems is misspelling
{vfld137438953484} context strings {vfld2850492484943872}, or including
one or more leading blanks with the name. Personally, I find that I often
leave the initial “j” from the default contents of this field in Topic Editor. I
miss it when highlighting the text to replace.

You may find it easier to use
{vfld137438953482} keyboard shortcuts{v{ld-9223348397354778624} than
mouse commands while you are typing. You can select a line of text with
[SHIFT]—-[END], bring up Topic Editor with your hotkey, then use the [-],
[TAB] and [ENTER] keys to move to the proper option within a dialog box.
This can also prevent many of the common errors.

When you have a series of hot spots to enter, it is often easier to first enter
all the displayed text, and then use Topic Editor to create the hot spots. This
avoids the need to turn off the formatting after each line. The alternative is to
use [CTRL]-[SPACE] to turn off the formatting after each line before
proceeding.

If you are creating a very large application, you may prefer to save your file in
DOC format between compiles. This is much faster than creating an RTF file,
and also produces a much smaller file. Save it using the RTF file name. This lets
you continue to use the Project Editor interface, and you won’t risk having an
obsolete version of the file in the RTF name (as you might if you used different
names). If you do this, be sure to remember to save your file in RTF format
before compiling. Otherwise the compiler quickly chokes on this file.




The Viewer Authoring Guide tells you how to configure Word to eliminate
the File Conversion dialog box. However, this dialog box can help you detect
problems when a different format is shown, or the dialog box does not appear
at all.

Standard hot spots appear in the compiled application as green underlined
text. You can change this by using Topic Editor. With the second element (the
Jump to command) selected, you can choose Hot Spot Formatting of None or
Underlined and Colored. Choosing None makes your text appear in the color
this text was formatted with. Use Character from the Format menu if you
want to select a different color. You can’t have the underlining, however. If
you use a nonstandard appearance, be certain that your users understand. Be
consistent!



3.3 Howdoll ...

Create Additional Topics?
Complexity: EASY

Problem

Now I want to create the topics I referenced in Contents. I also want users to
be able to jump from one topic to the next (or previous) by using the Browse
buttons.

Technique
You create these topics just as you did the Contents topic, by using Topic
Editor. You define the browse sequence similarly.

The files that are used or created in this How—To may be found in the
VIEWERHT\HOWTOS\CHAP3\CHAP3 3 directory on the enclosed CD—
ROM disk. You build on the files created in the previous sections of this
chapter, located on your hard disk in subdirectory VIEWERHT\CHAP3.

Steps
1. Usually you prepare your directories and files next, but in this chapter
continue to use the the directories and files from the previous sections.

2. Start Project Editor, and open your project file, \VIEWERHT\CHAP3\
CHAP3.MVP.

Next update the document:
3. Double—click on the line naming your text file: TEXT\CHAP3.RTF.

4. Project Editor starts Word for Windows.

5. Word displays its Convert File dialog box, showing that the selected file
is in Rich Text Format (RTF). Click on the OK button.

6. Your document appears, with the beginning of the Contents topic at the
top of the window.

7. Make sure the paragraph symbol at the right-hand end of the Word ruler
is depressed. This causes all hidden text, blanks, and control codes to be
displayed.

8. Position the insertion point at the end of the document. You can insert
new topics anywhere, but it’s best to keep them in a logical sequence.
That makes it easier to locate a particular topic, and it often places
similar information close by, which can make it easier to write your text.

Now create the first topic, How Is a Viewer Application Created?
9. Use the hotkey you defined to bring up Topic Editor.

10. You want the first entry, Topic (page break and # footnote). Because it is
already selected, click on OK.

11. Enter the context string you selected for this topic in the previous How—
To, ctx_chap_2, and click on OK.

12. Bring up Topic Editor with your hotkey again, without moving the
insertion point.



13.
14.
15.

16.
17.
18.
19.

20.
21.

22.
23.
24.
25.

26.

27.

28.

29.

Select Topic title ($ footnote). Click on OK.
Enter the title, Designing a Viewer Application and click on OK.

Bring up Topic Editor with your hotkey once again, without moving the
insertion point.

Select Topic groups (+ footnote). Click on OK to display the dialog box.
Enter the word main as the Topic Browse Sequence.
Enter 010 as the Browse Sequence Number.

Leave the Topic Groups blank. The completed dialog box should look
like Figure 3—13.

{ewc vwrht2, TsTextButton, "Figure
3i213"[Macro=JI(" viewerht. mvb>SecWin', "fig3 13")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return to Word.

Without moving the insertion point, press [CTRL]-[SPACE] to restore the
normal format, select a larger font size, and click on the boldface button.

Type the topic heading, Designing a Viewer Application
Press [ENTER] then select Normal style to return to the standard format.
Drop down a few more lines.

Go to your Contents topic and highlight the hot spots under Chapter 2.
Choose Copy from the Edit menu to copy this text to the Clipboard.

Return to the bottom of your new topic and insert the text you just copied
by pressing [SHIFT]-[INS].

Repeat these steps for the first topic under Chapter 2, Introduction. Use
chap?2 as the Topic Browse Sequence, with Browse Sequence Number
010. Enter a couple of lines of suitable text under the topic instead of
copying hot spots from the Contents.

Repeat the preceding steps for each of the remaining topics within
Chapter 2. Increase the Browse Sequence Number by 10 for each topic.
Notice that the values you used in the previous Browse definitions are
displayed, so you don’t have to reenter values that don’t change. Be sure
to add some appropriate text for each topic. The text for the topic titled
What Files Can Be Used? should include a list of the supported file
types. How—To 3.4 expects the term WMF to be used in that topic.

Repeat the same sequence of steps for Chapter 3. In the chapter—heading
topic, use main as the Topic Browse Sequence, and 020 as the Browse
Sequence Number. Copy the appropriate hot spots from the Contents
topic as you did for Chapter 2.

In the remaining topics, use chap3 as the Topic Browse Sequence, and
use Browse Sequence Numbers starting with 010 and increasing by 10
for each topic. Enter a couple of lines of text in each as you did for
Chapter 2.

Your document should look like Figure 3—14 after making these changes.



30.
31.
32.
33.

34.

{ewc vwrht2, TsTextButton, "Figure
3i;214"[Macro=JI(" viewerht.mvb>SecWin', "fig3 14')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Choose Save As from the File menu.
Select Rich Text Format (*.RTF) under Save File as Type.
Click on OK.

Choose Exit from the File menu or double—click on the Windows control
menu box to exit Word.

When the message Do you want to save changes to CHAP3.RTF?
appears, you must click on No.

Next define the Browse groups. It actually is best to define them before
creating the topics, because they were planned in advance.

35.
36.
37.
38.
39.
40.
41.

42.
43.
44,

45.

46.

47.

48.

49.

50.
51.

You should be back in Project Editor. If not, switch to it now.
Choose Groups from the Section menu.

Click on New to define a new group.

Enter the name of the first group as main.

Enter a title for the group, such as Chapter Headings.
Leave the Searchable box checked.

Repeat steps 37 through 40 for groups chap2 and chap3. Figure 3-15
shows the dialog box after defining the last group.

{ewc vwrht2, TsTextButton, "Figure
3i 215" [Macro=JI(" viewerht.mvb>SecWin', fig3 15")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK.
Save your project file.

Now you can compile the application by choosing Build from the
Compile menu.

There shouldn’t be any errors this time. If there are, you can examine
them after the compile is finished by choosing Display Error Log from
the Compile menu.

Correct any errors and recompile until there are no errors reported. You
may have to repeat this process several times.

Now test your application by choosing Run Viewer on CHAP3.MVB
from the File menu.

When you click on a hot spot in the Contents, it should display the
requested topic.

Click on a hot spot for a chapter title. It should display a topic with hot
spots listing the sections within that chapter.

The Browse buttons should be grayed out in the Contents topic.

The Browse>> button should be active in the Chapter 2 topic (Designing
a Viewer Application). Click on it—the Chapter 3 topic should be



displayed.
52. The Browse<< button should be active in the Chapter 3 topic. Click on it
—the Chapter 2 topic should be displayed.

53. Within the topics for each chapter, the Browse>> button should be active
in the first topic, the Browse<< button should be active in the last topic,
and both Browse buttons should be active in the topics in between. Click
on them. The >> button should always display the next topic in the
chapter, and the << button should display the previous topic.

54. Try using the Go Back and History buttons. See what they do.
55. Click on the Search button. You should see a window like Figure 3—16.

{ewc vwrht2, TsTextButton, "Figure
3i216"[Macro=JI(" viewerht. mvb>SecWin', "fig3 16")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

56. Notice the Topic Groups listed. Look familiar? These are the groups you
created for the Browse sequences. Enter a common word such as
Contents and click on OK. Try it out.

How It Works
Most of the steps in this example were the same as when you created the
Contents topic.Concentrate on the new operations.

The first new operation was the definition of the Topic Groups entries.
These set up the Browse sequences—which browse buttons are active and
which topics they display. The name used in the topic browse sequence field
defines a group of topics, all using the same browse sequence, that the user
can browse through. The topics are displayed in the order of the browse
sequence numbers. The << button is inactive in the first topic, because there
is no previous topic to display. Similarly, the >> button is inactive in the last
topic because there is no next topic.

The topic groups appear in the Search dialog because you leave the
Searchable option on when you defined the groups. If you turn that option
off, they only serve as Browse groups. The Search function is explored in
great detail in Chapter 11.

The History button lists the titles of the topics that you recently displayed,
in reverse order. These are the titles you defined through Topic Editor. Did
your list show an Introduction topic? Could you tell which one it was? As
you can see, these titles must be unique to avoid confusing the user.

Comment
If you had defined the topic browse sequence names in Project Editor before
you used them in the document, you could have selected the desired name
from the pull-down list in the Topic Editor’s dialog box. That would have
made the definitions faster and less subject to error by eliminating some
typing. Once again, planning and preparation make authoring faster and
easier!

Browse Sequence Numbers should always be entered in increments of at
least 10. This allows room for inserting new topics between existing ones. It



also allows room for changing the sequence of some topics without having to
edit all of them.

The values associated with all of the topic definitions you enter (context
string, title, and browse sequence) are stored as footnotes. Hot spots and most
other commands are stored within the standard text. They use character
formatting, paragraph formatting, and curly braces—{}—to distinguish
commands from normal text.

Would you like to be able to look at the footnotes and see the values? Just
select Footnotes from Word’s View menu and a window opens showing
them. Word keeps the two windows synchronized; if you move the insertion
point within one window, the other will move with it.

You were able to copy the hot spot text from one topic to another because
it is just specially formatted text. There is nothing magical about these
entries. You could also copy a footnote definition by copying the footnote
code. The values associated with that would be copied, too.

Context strings can be defined in the body of a topic, as well as in the
heading. A hot spot that uses a context string located within a topic displays
the text starting with the beginning of the paragraph where the context string
is defined, rather than the beginning of the topic. If you create a hot spot near
the end of a topic, be sure to add enough blank lines at the end of the topic to
fill the remainder of the pane.

While compiling you may get a compiler message saying
{vfld2305858952132296716} Warning 6181{vfld2305857852620668928}:
Specified word breaker unable to process word. This is due to a bug in
Viewer, and you may ignore it.

{vfld137438953484} Warning 6182 {vfld280933810831360} has also been
reported similarly. These warnings usually seem to be caused by temporary
files left over from previous compiles—they go away if you recompile the

same files.



34 Howdoll ...

Create a {vfld137438953482}Popup{vfld3800470531342336} Topic?
Complexity: EASY

Problem

I’ve seen Windows Help display information in a popup window when I click
on a hotspot. I want to do that in my Viewer application to help define some
terms that may be unfamiliar to the user.

Technique

A popup displays the contents of a topic that is defined much like any other.
The hot spot displays it as a popup rather than in the full window. You use
Topic Editor to prepare both the topic and the hot spot.

You continue to use the application you’ve been building in this chapter.
You use the popup to define the file type WMF in the second section of
Chapter 2. If you didn’t use that term in your text, you add it here.

The files that are used or created in this How—To may be found in the
VIEWERHT\HOWTOS\CHAP3\CHAP3 4 directory on the enclosed CD—
ROM disk. This How—To builds on the files created in the previous sections
of this chapter, located on your hard disk in subdirectory VIEWERHT\
CHAP3.

Steps

First prepare your directories and files:

1. Usually you would prepare your directories and files next, but for this
chapter continue to use the the directories and files from the previous
sections.

2. Start Project Editor, and open your project file, \VIEWERHT\CHAP3\
CHAP3.MVP.

Next update the document:
3. Double—click on the line naming your text file: TEXT\CHAP3.RTF.

4. Project Editor starts Word for Windows.

5. Word displays its Convert File dialog box, showing that the selected file
is in Rich Text Format (RTF). Click on the OK button.

6. Your document appears, with the beginning of the Contents topic at the
top of the window.

7. Make sure the paragraph symbol at the right-hand end of the Word ruler
is depressed. This causes all hidden text, blanks, and control codes to be
displayed. (I'm repeating this in every How—To in this chapter to help
make it automatic. [ won’t mention it again in the other chapters.)

8. Position the insertion point at the end of topic 4, titled Viewer’s Files.
You can insert new topics anywhere, but it’s best to keep them in a
logical sequence. That makes it easier to locate a particular topic, and it
often places similar information close by, which can make it easier to
write text.

9. Use the hotkey you defined to bring up Topic Editor.



10.

11.
12.

13.

You want the first entry, Topic (Page break and # footnote). Since it is
already selected, click on OK.
Enter the context string for this popup, ctx_pop_wmf, and click on OK.

Don’t define a topic title or browse sequence for this topic. These options
aren’t used for popup topics, since these topics are only displayed
through hot spots.

Enter the text you want displayed in the popup window. This should
explain what the term “WMF”” means. For example:

This refers to the Windows Meta File format. It contains instructions
to draw lines and circles, rather than the contents of the resulting
pixels. WMFs are very small files that display with high precision at
all resolutions.

14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

24.

Display the previous topic (Viewer’s Files), and select the term WMF in
your text.

Bring up Topic Editor with your hotkey.

You want the first entry, Hot spot (text). It is already selected, so click on
OK.

While Hot Spot is selected on the left side of the window, click on Popup
under the Hot Spot Type on the right side.

Select the Jump to... element.

Enter the context string for the popup topic, ctx_pop_wmf. Click on
OK. Your popup should look like Figure 3—17.

{ewc vwrht2, TsTextButton, "Figure
3iy 217" [Macro=JI(" viewerht.mvb>SecWin', fig3 17")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Notice that the displayed text has a single underline, rather than the
double underline used for jumps.

Save your file and compile your application. If you’ve forgotten how to
do this, reread How—To 3.3.

Test your application. You should see something like Figure 3—18.

{ewc vwrht2, TsTextButton, "Figure
3i;218"[Macro=JI(" viewerht.mvb>SecWin', "fig3 18')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Notice the slightly different appearance of the hot spot. It is displayed
with a dotted underline, rather than the solid underline you saw for
jumps.

Resize your Viewer window smaller and click on the popup hot spot. The
popup window may extend outside the Viewer window.

Comment
You cannot control the size, margins, or position of a popup window created



in this way. Viewer determines the size based on the amount of text to be
displayed. The position is based on the location of the mouse pointer. How—
To 5.4 shows how to use a custom popup pane within your window.

Popup windows are most commonly used to provide definitions of terms,
as in this example. They can serve any purpose compatible with their
temporary nature.



3.5 Howdoll ...

Create Searchable
{vfld137438953482}Keywords{vfld3800470531342336}?

Complexity: EASY

Problem
I want to define specific terms the user could use to search for information.
This must serve in addition to the existing full-text search.

Technique

You use Topic Editor to define keywords in your topics. These can consist of
more than one word, and do not have to be terms that are actually used in the
document. The user can locate topics using the keywords by clicking on the
Index button, just as the Search button is used for the full-text search.

Although keywords are usually defined at the very beginning of a topic,
you also create some in the middle to see what happens.

The files that are used or created in this section may be found in the
VIEWERHT\HOWTOS\CHAP3\CHAP3 5 directory on the enclosed CD—
ROM disk. You build on the files created in the previous sections of this
chapter, located on your hard disk in subdirectory VIEWERHT\CHAP3.

Steps

First prepare your directories and files:

1. Usually you would prepare your directories and files next, but in this
chapter continue to use the the directories and files from the previous
sections.

2. Start Project Editor, and open your project file, \VIEWERHT\CHAP3\
CHAP3.MVP.

Next you can update the document:
3. Double—click on the line naming your text file: TEXT\CHAP3.RTF.

4. Project Editor starts Word for Windows.

5. Word displays its CONVERT FILE dialog box, showing that the selected
file is in Rich Text Format (RTF). Click on the OK button.

6. Your document appears, with the beginning of the Contents topic at the
top of the window.

7. Make sure the paragraph symbol at the right-hand end of the Word ruler
is depressed. This causes all hidden text, blanks, and control codes to be
displayed.

8. Display the second topic, Designing a Viewer Application.

9. Position the insertion point at the beginning of the topic heading, just
after the last footnote code.

10. Use your hotkey to bring up Topic Editor.
11. Select Keywords (K footnote) and click on OK to display the dialog box.
12. Leave the Keyword Index unchanged.



13. Enter one or more keywords as shown in Figure 3—19.

{ewc vwrht2, TsTextButton, "Figure
3i; 219" [Macro=JI(" viewerht.mvb>SecWin', fig3 19")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

14. Click on OK to return to Word.

15. Define keywords in the heading of other topics similarly. Define
Introduction as a keyword in both Introduction topics.

16. Save the file and compile your application as usual. Next, test your
changes.

17. Click on the Index button. You should see a list of all the keywords you
defined, with the number of topics where each was defined, as shown in
Figure 3-20.

{ewc vwrht2, TsTextButton, "Figure
3i; /20" [Macro=JI(" viewerht. mvb>SecWin', fig3 20")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

18. Select a keyword that was defined once, and click on OK. Viewer
displays the topic where it was defined.

19. Click on the Index button again, select a keyword that is defined more
than once, and click on OK. There should be at least one, since you
defined Introduction twice.

20. Viewer displays a list of the topic titles where this keyword is defined.
Select one and click on Go To. The selected topic is displayed.

How It Works

The keywords are stored in your document as footnotes, using the letter K as
the footnote code. The compiler assembles the footnotes into an index similar
to the index used by the Search function.

Comment

Keywords don’t have to be terms that are actually used in your text. They can
be common terms that the user would understand, or terms the user might use
to describe something in your application.

These keywords work exactly like the ones in the Windows Help system.
WinHelp allows multiple keyword indexes to be defined, using different
footnote code letters. The WinHelp secondary indexes can only be accessed
by a program calling Help. By contrast, Viewer lets the author define
secondary indexes through Topic Editor dialog box that can be easily used by
your user. Try this on your own. The secondary index groups must be defined
through Project Editor’s Sections menu before you use them in your
document. You should have no problem finding the right menu item and
completing the information in the dialog box.






3.6 Howdoll ...

Keep the Table of Contents Visible?
Complexity: INTERMEDIATE

Problem
I want to keep my table of contents visible to the users while they look at the
topics, to make it easier for them to move around in my application.

Technique

You use Project Editor to define two panes in your window, with the
Contents topic in one and all other topics in the other. For this to work
properly, you have to create one additional topic that appears in the regular
pane, next to the Contents, when the file is loaded and whenever the user
asks to display the Contents.

The files that are used or created in this section may be found in the
VIEWERHT\HOWTOS\CHAP3\CHAP3_6 directory on the enclosed CD—
ROM disk. You build on the files created in the previous sections of this
chapter, located on your hard disk in subdirectory VIEWERHT\CHAP3.

This process goes through many different dialog boxes and can be
confusing. This section includes even more pictures than usual to help make
it clearer.

Steps

1. Usually you would prepare your directories and files next, but in this
chapter continue to use the the directories and files from the previous
sections.

2. Start Project Editor, and open your project file, \VIEWERHT\CHAP3\
CHAP3.MVP.

Next define the window panes:
3. Choose Window Definitions from the Section menu. The Window
Definitions dialog box shown in Figure 321 is displayed.

{ewc vwrht2, TsTextButton, "Figure
3i 21" [Macro=JI(" viewerht. mvb>SecWin', fig3 21")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

4. Click on the Properties button to display the Window Properties dialog
box.

5. Select the Use Default Color checkbox, and enter the Window Caption as
Viewer Demo App. Figure 3—22 shows the completed dialog box.

{ewc vwrht2, TsTextButton, "Figure
3i%22"[Macro=JI(" viewerht.mvb>SecWin', fig3 22")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

6. Click on the Master Pane button to display the Master Pane Properties



10.

11.
12.
13.

14.
15.

16.

17.
18.

19.

dialog box.

Clear the Auto—Position check box. The Master pane cannot be resized to
allow room for your new pane if this is selected. The dialog box should
look like Figure 3-23.

{ewc vwrht2, TsTextButton, "Figure
3i; /23" [Macro=JI(" viewerht. mvb>SecWin', "fig3 23")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on the Preview On button. Viewer displays your main window and
master pane.

Click anywhere in the master pane, and locate the handle on the left
edge. It’s small and hard to see.

Drag the handle to the right until the master pane covers only the right
half of the window. Figure 3—24 shows this window.

{ewc vwrht2, TsTextButton, "Figure
3i; /24" [Macro=JI(" viewerht. mvb>SecWin', "fig3 24")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Close the preview window by double—clicking on the control menu box.
Choose the Panes file folder tab.

Click on the New button and then the Properties button. The Pane
Properties dialog box is displayed.

Enter the pane name as contents.

In the Dismiss When box, select Title Is Closed. The dialog box should
look like Figure 3-25.

{ewc vwrht2, TsTextButton, "Figure
3i /25" [Macro=JI(" viewerht. mvb>SecWin', "fig3 25")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on the Windows button to display the Pane Associations dialog
box.

Under Show pane “contents” in which windows?, select Main.

Select the Show in Window check box. The dialog box should look like
Figure 3-26.

{ewc vwrht2, TsTextButton, "Figure
3i /26" [Macro=JI(" viewerht. mvb>SecWin', fig3 26")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on the Preview button to display the window. You see the new
regular pane, labeled Contents, on the left and the master pane on the
right.



20.

21.
22.

23.

Click on the regular pane to display the handles, and drag them until the
Contents pane covers the left side of the window as shown in Figure 3—
27. Viewer shows both the scrolling and non—scrolling regions in the

master pane, which looks like another pane. Don’t be confused by this.

{ewc vwrht2, TsTextButton, "Figure
3i /27" [Macro=JI(" viewerht. mvb>SecWin', fig3 27")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Double—click on the control menu box to close the window.

Click on OK in the Window Definitions dialog box to return to Project
Editor.

Choose Save from the File menu to save your changes.

Next, create the new topic and adjust the context strings:

24.
25.

26.
27.
28.
29.
30.
31.

32.
33.

34.
35.
36.

Double—click on the text file name to start Word.

Press [ENTER] to create a blank line before the start of the Contents
topic.

Use your hotkey to invoke Topic Editor.

Select the Topic entry and click on OK.

Enter the desired context string as ctx_contents and click on OK.
Use the hotkey to invoke Topic Editor again.

Select Topic—Entry Command and click on OK.

Click on Paste Command, and select the

{vfld137438953483} PanelD {v{ld3940108508069888} command as
shown in Figure 3-28. This selects the command to be executed when
the topic is entered. Click on OK.

{ewc vwrht2, TsTextButton, "Figure
3i; /28" [Macro=JI(" viewerht. mvb>SecWin', "fig3 28")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on Edit Command to set the command parameters.

Enter the file name as “CHAP3.MVB', window name as ~main', context
string as " ctx_contents_2', pane name as ~contents', and
PrintTabCopyOrder as 0. This dialog box is shown in Figure 3-29.

{ewc vwrht2, TsTextButton, "Figure
3i; 229" [Macro=JI(" viewerht.mvb>SecWin', "fig3 29')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK in each dialog box to return to Word.
Press [CTRL]-[ENTER] to create a hard page break between the topics.

Select the # footnote code at the beginning of the Contents topic, and
activate Topic Editor. It will immediately show the context string dialog



box with the current context string.
37. Change the context string to ctx_contents_2 and click on OK.
38. 37.Save your file as an RTF file and exit Word.

39. Compile your application, and test it. Your initial window should look
like Figure 3-30.

{ewc vwrht2, TsTextButton, "Figure
330" [Macro=JI(" viewerht. mvb>SecWin', fig3 30")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

Viewer automatically displays the contents topic when the file is loaded. You
previously defined this to be the topic with context string ctx contents. Here,
you gave the new topic this context string, and changed the former contents
topic to context string ctx_contents 2.

You then defined the PanelD command to be executed whenever the
Contents topic is displayed. This command specifies that the topic with
context string ctx_contents 2 is displayed in the contents pane in the main
window.

The vertical line separating the topics is the border of the master pane.
Notice how close the master pane text is to that line. Viewer does not provide
any margin, to allow you the greatest possible control over the appearance of
your application. You can create a margin by using left or right indent
paragraph formatting in Word. Note that document format options are
ignored.

Notice the border around the table of contents. Regular panes are
automatically resized to fit the topic contents, which causes the border to be
displayed close to the text. This would look better without a border. This
resizing is also the reason why you checked the Use Default Color checkbox
for the window. If you hadn’t, a different color (the window color) might
show around the regular pane. You usually should use the same background
colors for the window and panes. The default color .is the best choice, since it
lets the user control the appearance. Try removing the border and selecting
different colors to see these effects.

Comment
There can only be one master pane, with as many regular panes as desired.

Only the master pane can have
{vfld137438953484}scroll bars {vfld13331578486784}. They display
automatically if the topic is too large to fit within the pane. The topics
displayed in any regular panes are
{vfld137438953484} clipped {v{ld13331578486784} if they are too large to
fit. Regular panes automatically shrink to fit smaller topics—keep this in
mind if you display a
{vfld137438953484 }border{vfld8790888492507856896} around a regular
pane. It just surrounds your topic.

The largest picture that can be displayed in the master pane without scroll
bars, with no border specified, is the width of the pane and one pixel less
than the height of the pane. If you specify a one—pixel border, the limits are
two pixels less than the width and three pixels less than the height.



All topics are displayed in the master pane unless forced into a regular
pane through a PaneID command.

Panes can be permanent, as in this example. They can also be used for
brief periods for particular purposes. You can use one pane or many. It is just
a way of organizing your information in the window—much like you might
use a table to organize material within a topic.

Panes can be used to provide a particular user interface. They can contain
any buttons, hot spot pictures or hot spot text you want. You could use more
than one pane this way—placing buttons on both sides of the master pane, for
example.

Topic entry and group entry commands are only executed for topics
displayed in the master pane. If topics with such commands are displayed in
regular panes, the commands are ignored.

The PrintTabCopyOrder field determines the sequence in which panes are
printed or copied. A value of zero prevents the pane from being printed or
copied.



3.7 Tips and Tricks

Using Word Features

= Define standard styles for your common headings and text, just as you do
when creating a document to be printed. Your Normal style defined in
Word should match the text in the body of your topics. Your Normal style
should also have Use As Default selected. This prevents Word from
creating unnecessary character—formatting commands in your RTF file,
thus reducing the file size.

= Use Auto color in all your character formats. This causes your text to be
displayed using the colors selected in the Windows Control Panel. If
you force black text, it is unreadable on systems that are configured for
light text on a dark background.

= Format your headings using Word’s standard heading 1, heading 2, and
heading 3 styles for topic headings and subheads, and use the Outline
View to see all your headings. This can be very handy for locating a
particular topic or section.

= If you perform some functions frequently while in Word, other than
operations involving Topic Editor, you can make them easier by creating
macros. A macro, in its simplest form, is just the recording of a series of
keystrokes or operations. The same keystrokes and operations can be
repeated by executing the macro. Simple macros can be created by
choosing Record Macro from Word’s Tools menu, entering the desired
macro name in the dialog box that appears, entering the keystrokes and
mouse actions to be repeated, and finally choosing Stop Recorder from
the Tools menu. Macros can be executed by selecting Macro from the
Tools menu, selecting the macro name, and clicking the Run button. The
creation and use of macros is explained in the Word documentation. The
Viewer documentation includes instructions for creating a macro to save
your document as an RTF file by selecting a single menu item.

= Some operations are easier if you use Word’s keyboard shortcuts,
especially when you are in the middle of typing. For example, [CTRL]—
[SPACE] resets temporary character format changes, and [CTRL]—[B]
toggles boldface. These are described in Word’s documentation. Standard
Windows functions, such as using Tab and arrow keys to move between
controls in a dialog box, are also useful.

= Ifyou use Word to create printed documents as well as Viewer files, you
may want different standard styles or macros. In this case you should
create a document template (DOT file) for the less common environment,
and define the appropriate styles and macros as local to that template.
Templates can be applied to Viewer documents by choosing Template
from Word’s File menu. The creation and use of templates is explained in
the Word documentation.

= The Viewer documentation suggests setting a global option in Word to
suppress the initial File Conversion dialog box. Personally, I prefer to see
the dialog box. Its absence is the best way to find that you accidentally
saved your document in Word’s DOC format using the RTF file
extension. This can be easily done by clicking on the Yes button in the
Save dialog box that appears when exiting Word. This dialog box is also



useful if you use Word for other functions besides creating Viewer files.
If desired, you can create a macro in your Viewer template file to
suppress this dialog box. Just use Word’s macro recorder function as
described above while following the instructions in the Viewer
documentation. If you do this, you also need to create a similar macro in
all of your other templates to restore your normal operation. If you name
these macros AutoOpen in each template, they execute automatically
when you open a document.

Editing Topic Commands

= If you select the text of a command you created previously and call up
Topic Editor, it picks up the selected command and allows you to edit it.
This is generally much easier than trying to edit the command text in
your document.

= If you need similar Viewer commands in several locations within a topic,
copy the command text using standard Word operations, then edit them
as necessary.

= Editing an existing command does not work if the command is in a table
cell. This will be fixed in a future release of Viewer.

= If you highlight multiple topics—even an entire topic—Topic Editor
displays each command found in the selected text and lets you edit any or
all of them together. This can be a fantastic time saver! This is an
undocumented feature of Viewer 2.0. Hopefully it will be documented,
and thus can be counted on to remain supported, in the next release.

Miscellaneous

= The Topic Editor function to create a new topic only lets you define the
context string. The developers are working on allowing you to define
optional topic titles and keywords in the same operation. This will
probably be included in the next release.

= When entering options in Topic Editor, be careful to leave the single
quote marks that are included in many entries by selecting only the text
between those marks. If you accidentally delete them, the left quote () is
on the key with the Tilde (~), above the Tab, on most keyboards. The
right quote (') is usually on the key with the double quote mark ("). The
Viewer developers have been asked to make this process simpler.



=| File Disk Tree Yiew Options Mail Info

Wlnduw Help

) ME

| &3 C: [STACYOL_DSK]

0-0O-
o-o-

B ‘EI%JJ.

=l =b [Ee Eld Ele =i =n

- £ viewer g1
— Cwiewerht Comovies
Cpictures

] movies CIsounds
] pictures Ctext
1 sounds
Cotext

- Cwep +

* +* -

C: 22.8ME free, 425ME total ‘Total 4 file(s) (0 bytes)

|Nntshared



Path to Microsoft Word:

| o hinard aireword. exe |_I

Path to Multimedia Yiewer Compiler:

| o hmvpubkithmtoolzharmes. exe |_I

Hot Key

F.epztroke to activate Topic Editar while vou are uzsing Word:

B Ctl + [ Shift + [ Alt +

(1] .4 | Cancel Help




: Viewer Project Editor - CHAP3.MVYP
E“E Edit Section Compile Help

ErEEDEEEEIREE

[ ] textichapa it

Baggage ]




= MNew Yiewer Element

Select item to insert:

Context string [# footnote]

Topic title [$ footnote)

Topic-entiy command [! footnote]
Topic groupsz [+ footnote]

Build tags [* footnote]

Keywords [K footnote]

Hot zpot [text]

Hot zpot [picture]

Picture [using bmx]

Picture [using ew> with MYBMP2)
Multimedia [using ew with MYMCIZ]
Embedded pane {ewX}

Search data type {dtppe}

Search field {vild}

Search field with data type {vfldH{dtype}
Search alias {alias}

1].4 Cancel Help




= Yiewer Topic Editor - CHAP3.MYP

Yiewer Elements: -
e Context String:

| chy_contentz

1].4 Cancel Help About___




= MNew Yiewer Element

Usze selected Text to create:

Search data type {dtype}

Search field {¥fld}

Cearch field with data type {vfldH{dtype}
Search alias {alias}

Cancel




Yiewer Elements:

Jump t n::t:-:_n::hp_E'

Yiewer Topic Editor - CHAP3.MYP

Hot Spot Text:

How iz a Wiewer Application Created?

Hot Spot Type
’V ® Mormal C! Popup

114

| Cancel

| Help About___




= Yiewer Topic Editor - CHAP3.MYP H

Yiewer Elements:

Hidden Textiz: & Jump O Command(z]

Context String:

| cty_chap_2 |
Window:

| | [2]

MYB Filename:
| |

Hot Spot Formatting
Ci'Mone
@ Underlined and Colored

1].4 Cancel | Help About___




#$5.Contentsy

l

Designinga Wiewer Applicationcty..chap, 27

Ll 4

Introductionety 2 intro
HowShowld] Degign the Application? ey, 2. design
Viewet's Fileacty 2 files]

What-Arethe Authonng Tools?eix. 2 authonng]
What Srethesupport Toolsietx 4 supnort]]

Creating a-dimple-Applicationets, chap 37

A I

Introductionety 3 intro

otart-a Mew Projectety, 3. project]

Create-a Contents Topicctx. 3. contents]

Create- & dditional Topicactx, 3. addl]
Create-a Popup Topicctz. 3. popan]
Createiearchable Keywordselx 3 keywordsy
Eeep the Table of Contents Visiblecks 3 _sisible]
Tipzand Tricksetx, 3. tins]



= [OPTIONS] - Title Options

Clipboard Citation:

Contents Topic: | chi_contents

Copyright: ||

|
|
lcon Filename: | picturesichapl.ico |_.I
|

Title: |

1] | Cancel




: Viewer Compiler
E“E Compile Help

Project. CHAP3.MVYP

72%

Warning : Tnresolwved
Warning ¢ Tnresolved
Warning o Tnresolved
Warning : Tnresolwved
Warning o Tnresolved
Warning o Tnresolved
Warning : Tnresolwved
Warning o Tnresolved
Warning : Tnresolwved
Warning ¢ Tnresolved
Warning o Tnresolved
Warning : Tnresolwved
Warning o Tnresolved

« |

Setting up fulltext index engine.



Untitled
File Edit Bookmark Help

51

ezigning a Viewer Application
Introduction
How Zhould I Design the Application?
Viewer's Files
What Are the Authoring Tools?
What Are the Zupport Tools?
reating a 3imple Application
Introduction
SJtart a New Project
Create a Contentz Topic
Create Additional Topics
Create a Popup Topic
Create Jearchable Eeywords
Keep the Table of Contentz Visibhle
Tipz and Tricks




= Yiewer Topic Editor - CHAP3.MYP H

Yiewer Elements:

................................... s | Topic Browse Sequence:

|main | E
Browse Sequence Number:

Topic Groups:
| 2]

| Inzert Group | Delete Group

1].4 Cancel | Help | About___




Micrusull Word - CHAP3.RTF -
a| File BEdil View Insert Format  lools lable Window Help

MEFEREEE R R A EEYE R E R E Y EE FEEEE )
[Normal | 2] Times Now Namon |[2] [0 [3] (B2l [2]l=i=1=) (et ]z 4] (0]

I i [H A |2 IF |F, -
1 ™ JI. Iy JI. ke JI. - JI. o al. o JI. ,1 ﬁ

Ak | e

r

#1. Creating-a-Simple- Applicationy
il
Introduchior oty 3 atoof
aitartaewcogectebr, S praent)|
Lrate s Cnnberds Pogieeds,. 30 ntrcs]
Lteate & ddranal |epweanty,. . adel
%ﬂ-&uﬂém _Fﬂp'ﬂ'l

R arty 2 kewmeoarns]]
Eeeprthe Table-of Cortents ‘hsm]e*u{ A _wrizibley
Tips-aad Tricgscts 3 L3y

ATl rmdneliom)

L I )

||

Thig-setaertrcduedonto Chapter-3 Craste-afimole A pploadon |
#i+Start-arNew-Projecty

il
This section demaonsirates how to Degis 4 aew projzet by creating e cecessam directory stnzcture aad

files —_—

=1 [+]

[ Pg1 S2¢ 1 1416 | & nl  Cold [ 1o | | [HUM | |




= [GROUPS] - Groups

T opic Groups:
Hame: 1].4

i

chap? % Searchable

B —— Cancel
Title: |

| Chapter 3

Comment:

Delete M | Entry Script._. Exit Script._.




- Seach |
~Search by Word | iR
[

~Search In:

Topic Groups:
@® All Topic Groups (< Chapter Headings
[<] Chapter 2
[<] Chapter 3

! Selected Topic Groups

) Current Topic Only




#¥-Viewer's-Filesy

il

Thiz-acction doactibea thefilzavacd by Vicwer, the-file formatathet- arc-aupported, and-ather- information:
relatedto-Yicwrorfilea cnd-dislevange

1

Thea fomaze-eapaottedinclude BT tet-fls g, EMP-and W E e aopn wmf pictate filee, WAY - ard MID-
gound-files, aa1d-A VT -move file 2]

B Thigtaferatntae Windmae Weta Fils fremat Tt oantainginstrietnna-toe deaseline g and- s ra,tather-than
the-rntterta nfthe-<redtingpivala W Ea are-werramal -filza-thal displaywith - high premsinge ateall-
tesolutions |



= Untitled |~

File Edit Bookmark Help

Contnts [0 pock | oy | semen | << [ [N

Viewer's Files

Thiz section describes the files uzed by Viewer, the file formats that ate supported, and other information
related to Viewer files and disk usage.

This refers to the Windows Meta File f'n:nrmat It contains instrictions to d:fav.r lines and circles, rather than b
the contents of the resulting pivels. WF s are very small files that display with high precision at all
e solutions




Yiewer Ele

ik

ments:

Yiewer Topic Editor - CHAP3.MYP

Keyword Index:

|EI - Main Eeywiord [ndex

Topic Keywords [one per line]:

Create
Application
Chapter 2

[ [+

114

Cancel

About___




Type a word, or zelect one from the hst

! ox ]
Index list # of Topics

Additional
Application

+

Authoring

AVI]

EMP

Chapter 2
Chapter 3
characteniztics
Contents

Create *I

T R - T g g—

-




= Window Definitions n

Eindnws] F"gnes] angps] (1] .4
- : Cancel |

Preview

Properties
Panes. .

Help

Delete Hew




= YWindow Properties n
Window Name: |

|
Left:[0 | Width:

[T Auto-Position

Background Color: :B [¥ Use Default Color

B ackground Picture: | |_.I
Window Caption: |Viewer Demo App |
Initial State: |N|:urmal |£I

™ Preview Menu and Button Bar

Coordinate System: | Device-lndependent [1024 » 1EIE4]|;I

Panes.___ | Preview On Help

Master Pane




= Master Pane Properties n

Pane Hame: | b azter Pane |

Top: D Max Height:
Left: Max Width:

[T Auto-Position

Background Color: :B [X Use Default Color
Border: |EIne-F'i:-ceI |£I

" Non-5crolling Region
Background Color: :B [X Use Default Color
Position: |T|:||:| |£|
Separator: |EInE-F'i:-ceI |£|

" Minimum Margin

Horizontal: IZI Yertical: IZI

Coordinate Spstem: | Device-lndependent [1024 » 1024] |_I

Window | Preview On Help




Viewer Demo App

Eunh:nlsl Inden Iﬁu Dack




Pane Properties n

Pane Hame: | cohtents

Background Color: :B [X Use Default Color

Border: |EIne-F'i:-ceI
Dizmizz When: [JLE)

Coordinate System: | Device-lndependent [1024 » 1EIE4]|;I

Windows._ _. Help




= Pane Associations

Show pane “contentz” in which windows?

| Cloze

| Preview

[@ Show in Window

Help




= Viewer Demo App HH

Eunh:nts Indesn JGo Dack || 1histor Geaich < I




= Paste Command

M atCandition +

Popupl D[ TitleFile', "Contest: Popupt ame']

Pl TitheFile', "Contexts Popupt ame']

Pozitionkd azterMwindowk ame', =, Wwidth, Heig
PozitionT opic[MwindowMame', ¥, ', Width, Heigh
Pozitiorsaindawlz, v, Width, Height, WindowSta
Prewvl]

Print[]

PrinterSetup(]

R egisterR outine DLLM ame', "Functiont ame', "F3
SaveMark[ Marker'

S howB uthanB ar(]

ShowbdenuB ar]

Std20B Littans(]

Std20kenus()

«] |

1] 4 | Cancel




= Edit Command

Edit Command: PanelD
TitleFile: |‘chap3.myt’

WindowM ame: | “main’

Context: |‘ct:-:_u:u:untents_2'

PaneM ame: | “contents’

PrintT abCopyOrder: |E

1] .4 | Cancel Help

PrintT abCopyOrder: Specifies the position of the pane for printing, copying, and tabbing




Viewer Demo App

File Edil Buouokinark Help
Emtcntsl Indee Iilq'. ot

iTto & Viege
Tntrodicting
Eow Shouldl L es:on the Spprlicabon
Wiewesls Bilen
Taat Arethe Autaonng Tooled
Waat Arc the Supaort Tool:?
eabiaz alinale Applcaion
Introduction
. 1 Hew Fooees,
Creztz aCotiterts Topoe
- - & ool oo
Ctesta a Popnan Tiogrr
[Ctests Szarciable Kegraords
Eeeathe Table of Tomcente Woaihle

Tipe anc Tricke







You hear the phrase “A picture is worth a thousand words” many times, for
one simple reason—it’s true! A properly selected and placed picture makes a
description much clearer and easier to understand. That’s why this book is
filled with pictures. They make it easier for you to know exactly what you
should see on your screen. If you see something different, you know
immediately that you did something wrong. You can find and correct the
error quickly at that point. The same idea applies to your application. You
need the right mix of pictures, text, and multimedia to make your application
as effective and enjoyable as possible.

You’re probably thinking “What’s the big deal? Why is there a whole
chapter about this? After all, I have pasted pictures into documents by just
using the Picture command from Word’s Insert menu. That certainly was
easy. What else is there?”

There is a lot more. It’s easy to paste in a picture, but that doesn’t give you
any way to do some extra things you might want to. Viewer has a powerful
command that lets you

U Position the picture at either margin, with text wrapping around the
picture

U Position the picture in the body of the text, aligned with the
characters alongside

U Insert a caption, and control its position—above or below, centered,
or aligned with the left or right edge of the picture; you can even
control the color of the caption text and background

U Use a 256—color picture on systems that can display it, and control
how it is shown on 16—color systems

U Make sure your picture looks its best on different displays—VGA,
SVGA, or 8514

U Cause Viewer to execute one or more commands when the user
clicks on the picture; you can even execute different commands if the
user clicks on different parts of a single picture

This chapter shows you how to do all of these things and more. You also
learn how to show a picture only when the user requests it, in popup or
secondary windows. Finally, you learn about various problems you might run
into, and how to prevent or cure them.

There is one other important reason to use the Viewer command instead of
the crude technique of pasting a picture. Viewer can’t compile a topic that is
larger than 32K bytes. Pictures that are pasted in a Word document count
toward this size limitation, while pictures displayed with a Viewer command
do not. A 320x200x256 color image contains 64,000 bytes, while a
160x100x16 color picture contains 8,000 bytes. Thus, one pasted picture with
256 colors, or a few with 16 colors, could be enough to bring you over the
limit.



4.1 Howdol ...
Insert a Picture in a Topic?
Complexity: EASY

Problem

I want to include pictures within my topics. Some of them should go in the
middle of my text, others at the left margin, and others at the right margin.
Text should flow around pictures that are positioned at the margins. The
pictures can’t add lots of bytes to the topic size, or my topic will be too big.

Technique
You use Topic Editor to insert a picture and control its position. Text always
wraps around pictures that are positioned at either margin.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP4 1, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP4 1. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture file for this How—To from the
VIEWERHT\HOWTOS\CHAP4\CHAP4 1\PICTURES directory on the
CD-ROM to the VIEWERHT\CHAP4 1\PICTURES subdirectory on
your hard drive.

3. Use Project Editor to create a new project file in your VIEWERHT\
CHAP4 1 directory. Enter the name of your document file as TEXT\
CHAP4_1.RTF. Save the updated project file.

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t need context strings or other topic
features because it only uses one topic. Viewer displays the first topic
when a file is loaded unless you specify otherwise.

Now you can create the document file:
5. Enter the following text:

This text was before the command. This text is after the command.
Just to show what happens, we include lots of text here. Did you
know that Viewer applications can be created to run under Windows
3.1 or Modular Windows, and on Sony Multimedia CD-ROM Players
and Tandy Video Information Systems? The Topic Editor command
you use in this How-To can prepare pictures for any of these
environments.

6. Place the insertion point between the first and second sentences of your
text. Call up Topic Editor with the hotkey you selected (probably
[CTRL]—[T]), and select the Picture (using ewX with
{vfld137438953483} MVBMP2 {v{ld-35321252696555520}) entry. This
brings up the standard Topic Editor window showing the command and



its elements.

Click on the Options button to bring up the Picture Options dialog box.
This lets you select the picture file and control its position and
appearance on other systems. (It does a lot more besides, as you see
throughout this chapter.)

Click on the box with the ellipses (...) at the end of the Picture Filename
field to bring up the Select Picture dialog box. This looks and works just
like a standard File Open dialog box. Use this to select the picture file to
be displayed as CHAP4 1.BMP. Click on OK when you are done, to
return to the Picture Options dialog box.

Next set the options to control how the picture is displayed:

9.

10.

11.

12.

13.

14.

15.

16.

Click on the Store Picture in Baggage check box. (If you are not familiar
with the Baggage file system, it is explained in section 2.2.)

Leave the Display Error Message box checked. This tells Viewer to
display a meaningful error message if the picture cannot be shown.

Click on the Position button that represents the desired justification for
this picture: Left, Right, or Text Aligned. Choose Left in this example.

The completed dialog box should look like Figure 4-1. You learn the
other options later. For now, click on OK.

{ewc vwrht2, TsTextButton, "Figure
4i;21"[Macro=JI(" viewerht.mvb>SecWin', ‘fig4 1")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

You see that the Topic Editor window now has the file name and options
you selected. It shows the ewl command because you selected left—
aligned. It would be ewr if you had clicked on right alignment or ewc for
character alignment. The term ewX is used to refer to the group of
commands.

Click on OK again, and you see the command appear in the Word
document. It should look like Figure 4-2.

{ewc vwrht2, TsTextButton, "Figure
4i; 22" [Macro=JI(" viewerht. mvb>SecWin', ‘figd 2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

By putting the picture in the middle of the text, you can see the text
automatically wrapping around the picture. Of course, you could just
type the Viewer ewX command right into your document, but it’s a lot
easier to use Topic Editor.

Now you can compile and display your application. It should look like
Figure 4-3.

{ewc vwrht2, TsTextButton, "Figure
4i; 43" [Macro=JI("viewerht.mvb>SecWin', ‘figd 3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



How It Works

The ewX command creates an {vfld137438953482}embedded window {vfld-
35184913254711296} and calls the Viewer function MVBMP?2 to display the
picture you selected. The ewl, ewr, or ewc command is used, based on the
position option you select. The other options chosen are all passed to the
function to use in filling the window. The exclamation point before the file
name indicates that the file is stored in Baggage.

Topic Editor and Project Editor usually work together. When you selected
Store Picture in {vfld137438953482}Baggage{v{ld72057052872048640}
you did more than set the option in the ewX command. You also set the
option in the project file that causes the picture file to be copied into Baggage
when your application is compiled.

Comment

You noticed the lack of a

{vfld137438953484 }margin{vfld13331578486784} between the picture and
the {vfld137438953484} wrapping text{v{ld8142789060096688128}, right?

It would look better if there was some space between them. With Viewer you
currently only have three ways to do this—and none of them is all that great.

One way is to include a white border within your bitmap file, but this
stands out if the user selects a different background color on his or her
system. A variation is to set the Background color of the window and all the
panes to match the color of the border in the picture. This looks better, but the
user may be upset that your application doesn’t use the colors that were set
on his or her computer.

A second way is to put the ewX command and the text in adjacent cells in
a table, but this doesn’t let the text wrap around the top and bottom of the
picture.

A third solution is to position the picture on the right border then add space
by putting extra blanks or soft carriage returns [Shift|-[Enter] in the text at
the necessary places. This looks better than any of the options available for a
left-margin picture, but it’s a nuisance. If you create the space in your text, it
does not appear correctly if the user resizes the window and Viewer
reformats your text to match the new size. In short, there aren’t any ideal
solutions.

If the text starts after the ewl command, it displays starting at the upper—
right corner of the picture, without wrapping around the top of the picture. If
the command is at the end of the paragraph then all text precedes the picture
without wrapping. When the command is in the middle of the paragraph, as
in this demonstration, the picture is displayed at the beginning of the text line
following the location of the command.

Try creating variations on this example to see what happens. Use all three
picture alignments, with text before and after each. Try combinations of large
pictures with very little text and the reverse. Use your imagination! This type
of experimenting is the best way to learn all the capabilities of Viewer.



4.2 Howdoll ...

Display Multiple Pictures in a Row?
Complexity: INTERMEDIATE

Problem

I want to create my own button bar, by placing a series of pictures close
together in a row or column. I may want to use captions to label each button.
I want to use these bars as my user interface.

Technique
You can do this a few different ways in Viewer. First, you create a 1x6
(horizontal) table and put a picture in each cell. Then you do the same thing
with and without tables and with and without captions. You use the Viewer
ewc command with the MVBMP2 function, as you did in the last example.
You won’t see all of the details of using these bars as a user interface—this
is covered in detail in Chapter 6—but you get ready for that. At the end of
this section you see the minor changes that are needed to create a vertical
button bar.
You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP4 2, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP4 2. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from the
VIEWERHT\HOWTOS\CHAP4\CHAP4 2\PICTURES directory on the
CD-ROM to the VIEWERHT\CHAP4 2\PICTURES subdirectory on
your hard drive.

3. Use Project Editor to create a new project file in your VIEWERHT\
CHAP4 2 directory. Enter the name of your document file as TEXT\
CHAP4_2.RTF. Save the updated project file.

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t need context strings or other topic
features because it only uses one topic. Viewer displays the first topic
when a file is loaded unless you specify otherwise.

Now you can proceed with this How—To:

5. Position the insertion point in Word where you want the horizontal bar.

6. Click on Word’s Table icon and draw a 1x6
{vfld137438953482}table{vfld-137980119351296}; that is, a table with
six cells across and one down, as shown in Figure 4—4.

{ewc vwrht2, TsTextButton, "Figure
4i; V4" [Macro=JI("viewerht.mvb>SecWin', ‘figd 4")] [Font="Arial"



10.

/S12/B4] /W100 /H40/B1/D2}

Put the insertion point in the first cell of your table.

Call up Topic Editor with your hotkey, and select the Picture (using ewX
with {vfld137438953483} MVBMP2 {v{ld-8970462913399619584})
command. This brings up the standard Topic Editor window showing the
command and its elements.

Next, click on the Options button to bring up the Picture Options dialog
box. This dialog box lets you select the picture file and control its
position and appearance on other systems.

Click on the box with the ellipses (...) after the Picture Filename to
display the Select Picture dialog box. This looks and works just like a
standard File Open dialog box. Use this to select the file to be displayed
as EDITCOPY.BMP. Click on OK when you are done, to return to the
Picture Options dialog box.

Next set the options to control how the picture is displayed:

11.

12.

13.
14.
15.
16.
17.

18.

19.

20.

Click on the Store Picture in Baggage box. (If you are not familiar with
the Baggage file system, it is explained in section 2.2.)

Leave the Display Error Message box checked. This tells Viewer to
display a meaningful error message if the picture cannot be shown.
Leave the Text Aligned position selected.

Click on the Caption button to bring up the Picture Caption dialog box.
Enter the caption text Edit{ENTER]Copy.

Select the Centered Text Alignment and Caption Position Below options.
Leave the foreground and background colors alone for now. If you click

on the boxes with the ellipses (...) you see the options. The completed
dialog box should look like Figure 4-5.

{ewc vwrht2, TsTextButton, "Figure
4i; 5" [Macro=JI(" viewerht. mvb>SecWin', figd 5")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on the OK button here and in each of the other dialog boxes until
you are back in Word.

Repeat steps 8 through 15 for each cell in your table. Select a different
picture file for each cell, and use an appropriate caption for each. When
you are done your Word document should look like Figure 4-6.

{ewc vwrht2, TsTextButton, "Figure
4i; 26" [Macro=JI(" viewerht. mvb>SecWin', ‘figd 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Now compile the file. It should look similar to Figure 4-7.

{ewc vwrht2, TsTextButton, "Figure
412 T"[Macro=JI( viewerht. mvb>SecWin', “figd 7')] [Font="Arial"



/S12/B4] /W100 /H40/B1/D2}

More Ways to Make a Button Bar

The button bar entries are awfully far apart, aren’t they! You want it to look
better than that. Let’s try doing this in different ways—without the table,
without captions, or without either.

21.
22.
23.

24.

25.

26.

Double—click on the text file name to start Word.
Insert a few blank lines after the table created in the previous steps.

Use Topic Editor, as in steps 8 through 20, to set up the same commands
without using a table. Before starting each command, be sure the
insertion point is immediately after the closing brace from the previous
command. These entries should look like Figure 4-8.

{ewc vwrht2, TsTextButton, "Figure
4i; 8" [Macro=JI("viewerht. mvb>SecWin', ‘figd 8'")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Now compile your application, and use the Browse button to view the
second topic. This version should look like Figure 4-9. It certainly looks
a lot better!

{ewc vwrht2, TsTextButton, "Figure
4i; 9" [Macro=JI("viewerht. mvb>SecWin', ‘figd 9")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Let’s see how it looks if you leave out the captions. Insert a few blank
lines after the previous version, then create another table as in steps 5
through 19, but don’t enter any captions. Figure 4—10 shows the result.

{ewc vwrht2, TsTextButton, "Figure
4i;210"[Macro=JI( viewerht. mvb>SecWin', ‘fig4 10")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Repeat steps 22 and 23 without entering any picture captions. Figure 4—
11 shows all of the versions, including this result. It finally looks a lot
like a normal button bar, doesn’t it?

{ewc vwrht2, TsTextButton, "Figure
4i;211"[Macro=JI(" viewerht. mvb>SecWin', figd 11")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

Just as in How—To 4.1, this method uses an ewX command to create an
{v{1d137438953482}embedded window {v{ld8286622773195833344} and
call the Viewer MVBMP2 function to display the selected picture. The ewl,



ewr, or ewc command is used, based on the position option you select. The
other options chosen are all passed to the function to use in filling the
window. The exclamation point before the file name indicates that the file is
stored in Baggage. In this example you used of the caption option and tables
to arrange multiple pictures.

You saw that using a table increases the space between pictures. Actually,
that doesn’t save to be true. Word defaults to setting the width and height of
the table cells automatically, based on the contents. In this How—To, this
caused Word to make the cells large enough to hold your commands. You can
force the column width, row height, and spacing between columns as desired
through Word’s Table menu. This is a real nuisance, since you don’t know in
advance how big to make them—you have to use trial and error to get the
appearance you want.

Why would you ever want to put pictures in a table, then? One important
benefit is that each picture in the table takes up the same amount of space.
That can be important if you occasionally want to replace some of the
pictures while leaving others unchanged. You need to keep all of the pictures
in the same locations so they won’t appear to jump around between topics.
You see this technique used when you build your own user interface in
Chapter 6.

Topic Editor and Project Editor usually work together. When you selected
Store Picture in Baggage you did more than set that option in the ewX
command. You also set the option in the project file that causes the picture
file to be copied into Baggage when your application is compiled.

Comment

You are also interested in creating a vertical button bar. This requires creating
a vertical table, such as 6x1. Since your only position options for the caption
through Topic Editor are above or below the picture, you can’t make this look
as good as you’d like. You’d probably use a 6x2 table and put the captions in
the adjacent cells through Word instead. If you didn’t like the effect of the
table, you could just place an ewc command on each line.

These buttons don’t do anything if the user tries to click on them, but that’s
obviously needed. You get to that in sections 4.4 and 4.5.

Make sure all your pictures are the exact same height to avoid a
{vfld137438953484}jagged appearance{vfld280933810831360}. The widths
should also be the same if possible. If not, make the difference in width large
enough to be clearly deliberate.



4.3 Howdol ...
Pop Up a Picture?
Complexity: EASY

Problem
I want to display a picture, but only when the user clicks on a hot spot in my
document.

Technique
There are two different methods of doing this in Viewer. One displays the
picture in a popup window, which only remains visible until the user clicks
anywhere outside the picture. The second method displays the picture in a
secondary window, which remains open until the user closes it.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP4 3, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP4 3. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture file for this How—To from the
VIEWERHT\HOWTOS\CHAP4\CHAP4 2\PICTURES directory on the
CD-ROM to the VIEWERHT\CHAP4 2\PICTURES subdirectory on
your hard drive.

3. Use Project Editor to create a new project file in your VIEWERHT\
CHAP4 3 directory. Enter the name of your document file as TEXT\
CHAP4_3.RTF. Save the updated project file.

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t need context strings or other topic
features because it only uses one regular topic. Viewer displays the first
topic when a file is loaded unless you specify otherwise.

Now you can proceed with this How—To:
5. First define the popup hot spot. In the new topic, type in the hot spot text
you want the user to see, such as Pop up a picture.

6. Select the hot spot text you just entered.
7. Invoke Topic Editor with your hotkey.

8. A list of appropriate functions is displayed. You want the first, Hot spot
(text), which is already selected. Click on the OK button.

9. For Hot Spot Type, select Popup, as shown in Figure 4—12.

{ewc vwrht2, TsTextButton, "Figure
4i; 212" [Macro=JI( viewerht. mvb>SecWin', ‘figd 12")] [Font="Arial"



/S12/B4] /W100 /H40/B1/D2}

10. Then select the Jump to element to display the popup options.
11. Enter the context string you use for the popup topic: ctx_pop_picture.

12. Leave the Window and MVB Filename entries blank. The completed
dialog box should look like Figure 4-13.

{ewc vwrht2, TsTextButton, "Figure
4i;213"[Macro=JI(  viewerht.mvb>SecWin', ‘fig4 13")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

13. Click on OK in each dialog box until you are back in Word.

Next, prepare the picture to be displayed by creating a topic that only
contains that picture. It could contain a caption and/or normal text as well,
but leave them out to keep this simple.

14. Define a new topic after the current one, with context string
ctx_pop_picture. No title or other options should be defined.

15. Define an {vfld137438953482}embedded window {vfld-
8970462913399619584}, displaying the picture CHAP4 3.BMP,
immediately after the # footnote. See How—To 4.1 if you haven’t created
an embedded window before.

16. Save the file and compile your application as usual.

17. The compiled result looks like Figure 4—14 after you click on the hot
spot. Notice the shadow below and to the right of the picture, helping to

set it off. Viewer decides where the popup appears, unless you define a
custom popup window.

{ewc vwrht2, TsTextButton, "Figure
4i; 214" [Macro=JI( viewerht. mvb>SecWin', ‘fig4 14")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Next try it the other way, using a

{vfld137438953482}secondary window {v{ld71919613918576640}. You can
use the same popup topic you just created, so all you have to do is to define
the secondary window and create a new hot spot.

18. To define the secondary window, use Project Editor, and choose Window
Definitions from the Section menu.

19. Click on the New button to create a new window, then click on Properties
to define the name and features of the new window.

20. Enter the Window Name as SecWin.
21. Enter How-To 4.3 Secondary Window as the Caption.

22. Set both the Height and Width fields to 425. The completed dialog box is
shown in Figure 4-15.

{ewc vwrht2, TsTextButton, "Figure



4i; 415" [Macro=JI( viewerht. mvb>SecWin', ‘figd 15")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

23. Use the Windows Control box at the upper left corner to close the
window, then click on OK in the Window Definitions dialog box.

Next create the hot spot:
24. Use Project Editor to start Word for your document, and position the
insertion point just below the previous hot spot.

25. Type in the hot spot text you want the user to see, such as Pop up a
picture in a secondary window.

26. Select the hot spot text you just entered.
27. Call up Topic Editor with your hotkey.

28. A list of appropriate functions is displayed. You want the first, Hot spot
(text), which is already selected. Click on the OK button.

29. Leave the Hot Spot Type as Normal this time, and select the Jump to
element to display the popup options.

30. Enter the same context string you used before, ctx_pop_picture.

31. Pull down the list of Window names and select SecWin. You defined the
window before the hot spot so that the window name would be available
here. That prevents spelling errors that could occur if you had to type in
the name. Leave the MVB Filename entry blank. The completed dialog
box should look like Figure 4-16.

{ewc vwrht2, TsTextButton, "Figure
4i;216"[Macro=JI( viewerht.mvb>SecWin', ‘fig4d 16")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

32. Press OK in each dialog box until you are back in Word.
33. Save the file and compile your application as usual.

34. You should see something like Figure 4-17 when you test the new hot
spot.

{ewc vwrht2, TsTextButton, "Figure
4i; 217" [Macro=JI('viewerht. mvb>SecWin', ‘figd 17')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The hot spot for the picture popup looks exactly like the one you created in
Chapter 3. The displayed text is formatted in the document with a single
underline (and displayed with a dotted underline in the compiled result),
followed by the context string of the popup topic formatted as hidden.

The only thing that’s different from the text popup you created before is
that this time the popup topic contains a picture. It’s that simple! Viewer sets
the size and positions the popup window automatically.

The hot spot for the secondary window looks very much like a standard



jump hot spot. The displayed text is formatted in the document with a double
underline (and displays with a single underline in the compiled result),
followed by the topic context string formatted as hidden. The use of a
secondary window is shown by following the context string with a
{vfld137438953482} greater—than symbol {vfld-35184913254711296} (>)
and the name of the secondary window. Figure 4—18 shows both of these hot
spot definitions.

{ewc vwrht2, TsTextButton, "Figure
4i;218"[Macro=JI("viewerht. mvb>SecWin', ‘figd 18")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

The choices you made while defining the secondary window appear in the

Viewer MVP project file like this:
[WINDOWS]
SecWin="How-To 4.3 Secondary Window", (100,100,300,300,0),
(0),...,,(0),(0),(0)

This specifies the window’s name, caption, position, size, and colors. The
Viewer manuals have the complete documentation for this entry. There
should never be any need to work with this directly, however—it’s much
easier to use Project Editor.

Comment

As you can see, it is equally simple to have a picture appear in a popup or
secondary window. When you are deciding which to use, you need to
understand the differences in what they do. Some major differences are:

U Popup windows are closed when the user clicks anywhere outside
them. Secondary windows remain open until explicitly closed by the
user (or when Viewer is closed).

U Viewer usually determines the size and position of popup windows,
although you can control these features. (The use of an author—
defined custom popup pane is demonstrated in How—To 5.4.) You set
the size and position for secondary windows, and the user can move
and resize them.

U None of the Viewer commands such as printing, copying to the
clipboard, or jumping between topics can be performed within
{vfld137438953484} popup windows{vfld13331578486784}. (You
can have jump and popup hot spots within a popup, however.) Some
commands, but not all, can be performed within
{vfld137438953484}secondary windows{v{ld280933810831360}.
The distinction cannot be readily explained, but this information is
included in Viewer’s documentation.

Popups are usually used to help explain a single term or concept, where
that explanation is only needed briefly. Secondary windows are usually used
to display information that must remain visible as the user views different
parts of the application.

Pictures can also be displayed in standard panes within the Viewer
window. This technique is demonstrated in How—To 5.3.






4.4 Howdol ...
Use a Picture as a Hot Spot?
Complexity: INTERMEDIATE

Problem

I want to use a picture, instead of text, as a hot spot. I want to be able to
perform any function when the user clicks on the picture that I could with a
text hot spot. I’d like to have all the other options for displaying pictures, as
demonstrated throughout this chapter, available as well.

Technique

You demonstrate two techniques. The first uses a normal hot spot with the
Viewer bmX command in place of the displayed text. The hidden portion of
the hot spot is no different than that of a standard text hot spot. This
technique can be used to define jumps, popups, or secondary windows in the
same way you have defined them in previous examples. This does not
provide the display controls offered by the ewX command.

The second technique uses the ewX command that you having been
learning throughout this chapter, and takes advantage of the option built into
that command that operates just like a hot spot.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP4 4, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP4 4. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from the
VIEWERHT\HOWTOS\CHAP4\CHAP4 4\PICTURES directory on the
CD-ROM to the VIEWERHT\CHAP4 4\PICTURES subdirectory on
your hard drive.

3. Use Project Editor to create a new project file in your VIEWERHT\
CHAP4 _4 directory. Enter the name of your document file as TEXT\
CHAP4_4 .RTF. Save the updated project file.

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t need context strings or other topic
features because it only uses one regular topic. Viewer displays the first
topic when a file is loaded unless you specify otherwise.

Now you can proceed with this How—To. First use the bmX command:
5. Position the insertion point where you want the hot spot picture located
in the topic.

6. Call up Topic Editor with your hotkey.

7. In the New Viewer Element dialog box, select
{vfld137438953482}Hot spot (picture) {vfld-9042520507437547520}



10.

11.

12.
13.
14.
15.
16.

17.

and click on OK to display Topic Editor’s dialog box.

Select Normal as the Hot Spot Type. The dialog box should look like
Figure 4-19.

{ewc vwrht2, TsTextButton, "Figure
4i; 219" [Macro=JI( viewerht. mvb>SecWin', ‘figd 19")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on the Options button to display the Picture Options dialog box.

Click on the box with the ellipsis (...) after the Picture Filename to
display the Select Picture dialog box.

Select the CHAP4 4A.BMP file and click on OK to return to the Picture
Options dialog box. The dialog box should look like Figure 4-20.

{ewc vwrht2, TsTextButton, "Figure
4i; 20" [Macro=JI("viewerht.mvb>SecWin', ‘figd 20")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return to Topic Editor’s dialog box.

Select the Jump to element to display the options dialog box.

Enter the context string of the topic you want to jump to as ctx_jump.
Leave the Window and MVB Filename entries blank.

Leave the Hot Spot Formatting set to Underlined and Colored. The
completed dialog box should look like Figure 4-21.

{ewc vwrht2, TsTextButton, "Figure
4i;221"[Macro=JI('viewerht.mvb>SecWin', ‘figd 21")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return to Word.

Next create a hot spot using the ewX command. You can compile them
together.

18.

19.

20.

21.

22.

23.

Position the insertion point where you want this hot spot picture located,
a few lines below the first one.

Call up Topic Editor with your hotkey.

In the New Viewer Element dialog box, select Picture (using ewX with
{vfld137438953482} MVBMP2 {v{ld-8970462913399619584}), and
click on OK.

In the Topic Editor dialog box, click on the Options button to display the
Picture Options dialog box.

Click on the box with the ellipsis (...) after the Picture Filename to
display the Select Picture dialog box.

Select the CHAP4 4B.BMP file and click on OK to return to the Picture
Options dialog box.



24.

25.
26.

27.

28.
29.

30.

31.
32.

33.

34.
35.

Click on the Paste Command button to display the Paste Command
dialog box. This dialog box lists all the commands that you can execute
in a hot spot. Select the JumpID command as shown in Figure 4-22.

{ewc vwrht2, TsTextButton, "Figure
41; 422" [Macro=JI( viewerht. mvb>SecWin', ‘figd 22")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return to the Picture Options dialog box.

Next, click on the Edit Command button. This displays the Edit
Command dialog box, where you can set the options used by the
command you just pasted.

Enter *CHAP4_4.MVB' as the TitleFile surrounded by left and right
single quotes (*'). The left quote is found, on most keyboards, on the key
with the tilde (~) to the left of the digit one (1). The right quote is usually
found on the same key as the double quote, next to the Enter key.

Enter main as the Window Name.

Enter the context string ~ctx_jump' surrounded by left and right single
quotes. The completed dialog box should look like Figure 4-23.

{ewc vwrht2, TsTextButton, "Figure
4i; 23" [Macro=JI( viewerht. mvb>SecWin', ‘figd 23")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return to the Picture Options dialog box. It should look
like Figure 424 after you have made all of your selections.

{ewc vwrht2, TsTextButton, "Figure
4i; 524" [ Macro=JI("viewerht. mvb>SecWin', ‘figd 24")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return to Topic Editor.

Click on OK to return to Word. The entries in your Word document
should look like Figure 4-25.

{ewc vwrht2, TsTextButton, "Figure
4i; 25" [ Macro=JI("viewerht. mvb>SecWin', ‘figd 25")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Create a new topic with the context string ctx_jump, and enter a few
lines of text.

Save your document as an RTF file and exit Word.

Now compile and test your application. Both hot spots should look and
work exactly the same.

How It Works



You may have noticed that the bmX hot spot looks just like the familiar text
hot spots. The only difference is that the bmc command is present where the
displayed text is usually found.

The ewc command looks much like the ones you’ve seen in earlier
examples in this chapter. You added the [macro...] section to define the
action to be taken. If you look at it closely, you see that the entire JumpID
macro is enclosed in
{vfld137438953482}double quotes{vfld11132555231232}, and the variables
within it are enclosed in {vfld137438953482}single quotes {vfld-
9223356093936173056}. This is to distinguish the two logical levels of
parameters. The single quotes must use a matched pair of left and right
quotes.

Comment

Since both commands look and work the same, what difference does it make
which you use? The ewX command gives you some important added options.
It lets you specify a caption, as you saw in How—To 4.3. It also lets you use
256—color pictures, as you see in How—To 4.6. The Paste Command and Edit
Command dialog boxes also make it easy to invoke any other operations
supported by Viewer besides jumps and popups. You learn some of these
operations in later chapters.

You may have also noticed that the {vfld137438953483}bmX{vfld-
9042102693018992640} command did not offer an option of storing the
picture in the Baggage section. Files used by bmX commands are included in
the MVB file by the compiler. If you use these commands, be sure your
directory structure during authoring matches the structure you install on your
users’ machines. Notice in Figure 4-26 that the subdirectory name used
during authoring is included in the command. This is part of the compiled
application.

The bmX command is supported primarily for compatibility with Viewer
1.0 and Windows Help applications, so that this command does not have to
be converted.

There is one critical design consideration that applies to any graphic hot
spot—how does the user know it’s a hot spot? Text hot spots are normally
identifiable by their green color and underline, but you can’t do the same
thing with a picture. The cursor changes to a pointing finger over the entire
picture, as it does over text hot spots, but it’s risky to count on your users
noticing that. A better answer would be some indication in a caption. You
have to choose your own solution. Remember that it should be consistent
throughout your application, and either be self-evident (that’s tough to do!)
or be explained at the start of the program.



4.5 Howdol ...
Use Multiple Hot Spots in One Picture?
Complexity: INTERMEDIATE

Problem
I want to include one big picture, and have different things happen when the
user clicks on different parts of it.

Technique
You use Viewer’s Segmented Hotspot Editor
({vfld137438953482} SHED2 {v{ld3940108508069888}) to define multiple
hot spots within a single picture. The resulting file is then incorporated into
the Viewer application through the ewX command. You use a screen capture
of the Program Manager group for Viewer. You define each icon in the group
as a separate hot spot.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP4 5, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP4 5. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture file for this How—To from the
VIEWERHT\HOWTOS\CHAP4\CHAP4 5\PICTURES directory on the
CD-ROM to the VIEWERHT\CHAP4 5\PICTURES subdirectory on
your hard drive.

3. Use Project Editor to create a new project file in your VIEWERHT\
CHAP4 5 directory. Enter the name of your document file as TEXT\
CHAP4_5.RTF. Save the updated project file.

Now you can proceed with this How—To:

4. First you must start the SHED2 program and load the CHAP4 5.BMP
picture file. Maximize the window containing your picture for easiest
visibility.

5. Mark each of your hot spot regions by clicking on one corner and
dragging to the opposite corner. The outline is displayed as you drag, as
shown in Figure 4-26. The Edit menu shows an item named Undo New
Hot spot after a new hot spot region is defined. You can use that if you
make a mistake.

{ewc vwrht2, TsTextButton, "Figure
4i; 526" Macro=JI("viewerht. mvb>SecWin', ‘figd 26")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

6. Select the first region by clicking within it.
7. Choose Attributes from the Edit menu to display the corresponding



10.
11.

dialog box.
Set the Hot Spot Type to Popup for this example.

Enter the context string ctx_viewer. The completed dialog box should
look like Figure 4-27.

{ewc vwrht2, TsTextButton, "Figure
4i; 527" [Macro=JI("viewerht. mvb>SecWin', ‘figd 27")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK when done.

Repeat these steps for each hot spot region defined. The context strings
are all abbreviations of the application names, as follows.

ctx_compiler, ctx_project_editor, ctx_hotspot_editor, ctx_wave_edit,
ctx_bit_edit, ctx_pal_edit, ctx_convert, ctx_viewer_api,
ctx_compiler_help, ctx_authoring_help, ctx_read_me,
ctx_common_questions, ctx_authoring_guide, ctx_gallery

12.

When all of the regions have been defined, save the file as
CHAP4_5.SHG and exit.

Next create the document file:

13.

14.

15.

16.

17.

18.
19.
20.
21.
22.

23.
24.

Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t need context strings or other topic
features because it only uses one regular topic. Viewer displays the first
topic when a file is loaded unless you specify otherwise.

Place the insertion point where you want the picture displayed.

Call up Topic Editor with your hotkey, and select the Picture (using ewX
with MVBMP2) command. This brings up the standard Topic Editor
window showing the command and its elements.

Next, click on the Options button to bring up the Picture Options dialog
box. This dialog box lets you select the picture file and control its
position and appearance on other systems.

Click on the box with the ellipsis (...) after the Picture Filename to
display the Select Picture dialog box. This looks and works just like a
standard File Open dialog box. Use this to select file CHAP4 5.SHG.
Click on OK when you are done to return to the Picture Options dialog
box.

Click on the Store Picture in Baggage box.

Leave the Display Error Message ... box checked.

Leave the position as Text Aligned.

Click on the Caption button to bring up the Picture Caption dialog box.
Enter This picture has multiple hot spots as the caption text, and
choose Centered text alignment and caption position Below. Press OK
when done to return to the Picture Options dialog box.

Click on OK in each dialog box until you are back in Word.

Create new topics for each of the 15 hot spots. Each must have one of the



context strings you used in defining the hot spots, and a single line of text
describing the corresponding application. For example, the text for
context string ctx_viewer might say This is the Viewer runtime
program.

25. Save your document as usual and exit Word.

26. Compile and test your application. The picture does not show the borders
of the hot spot regions, but the cursor changes to a pointing finger over
each one. As you click on each icon, a popup window with your
description of the application appears. It should look like Figure 4-28.

{ewc vwrht2, TsTextButton, "Figure
4i; 28" [Macro=JI("viewerht. mvb>SecWin', ‘figd 28")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The SHED2 program stores the attributes for each region you define within
the SHG file. This information is used by Viewer when the picture is
displayed. The SHG file is displayed just like any other picture, except that it
cannot be pasted. That doesn’t matter, since you know that’s not the best way
to handle pictures.

Comment
You can use 256—color pictures in SHED2. The next section demonstrates
how to use 256—color pictures in Viewer.

You can display the Attributes dialog box in SHED2 by double—clicking
within the desired hot spot area.

'Warning: The compiler does not report any nonexistent context strings used in
the {vfld137438953484} SHG{v{ld-9042102693018992640} file as it does for
normal hot spots. Be sure to test all hot spot definitions after the file is compiled.




4.6 Howdoll ...
Use 256—Color Pictures?
Complexity: INTERMEDIATE

Problem

I want to include some beautiful 256—color pictures, but not all of my users
can display them. I need to have the pictures automatically adjusted to the
capabilities of the user’s display so that they always look their best.

Technique
You use two more features of the Viewer ewX command here. First is the
option of specifying dither or MCGA processing for 256—color pictures being
displayed on a 16—color system. The second feature is the ability to display
entirely different bitmap files on 16—color or 256—color systems.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP4 6, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP4 6. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from the
VIEWERHT\HOWTOS\CHAP4\CHAP4 6\PICTURES directory on the
CD-ROM to the VIEWERHT\CHAP4 6\PICTURES subdirectory on
your hard drive.

3. Use Project Editor to create a new project file in your VIEWERHT\
CHAP4_6 directory. Enter the name of your document file as TEXT\
CHAP4_6.RTF. Save the updated project file.

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t need context strings or other topic
features because it only uses one regular topic. Viewer displays the first
topic when a file is loaded unless you specify otherwise.

Now you can proceed with this How—To:

5. Position the insertion point where you want the first version of your
picture displayed.

6. Call up Topic Editor with your hotkey, and select the Picture (Using ewX
with MVBMP2) command. This brings up the standard Topic Editor
dialog box showing the command and its elements.

7. Click on the Options button to bring up the Picture Options dialog box.
This lets you select the picture file and control its position and
appearance on other systems.

8. Click on the box with the ellipsis (...) after the Picture Filename to
display the Select Picture dialog box. This looks and works just like a



standard File Open dialog box. Use this to select the PICT256.BMP file.
Click on OK when you are done, to return to the Picture Options dialog
box.

Next set the options:

9. Click on the Store Picture in Baggage box.

10. Click on the Dither Picture... checkbox.

11. Leave the Display Error Message ... box checked.

12. Select the desired position as left aligned.

13. Click on the Caption button.

14. Enter caption text Dither Example and select the Center checkbox

under Text Alignment. Click on OK to return. The completed dialog box
should look like Figure 4-29.

{ewc vwrht2, TsTextButton, "Figure
4i; 229" [Macro=JI( viewerht. mvb>SecWin', ‘figd 29")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

15. Click on OK in each dialog box until you return to Word.

Next set up the same picture, but use the MCGA option:
16. Position the insertion point a few lines below the previous command, and
repeat steps 6 through 15, except:

17. Click on Allow User to View Bitmap in MCGA Mode instead of Dither
Picture ....

18. Enter caption text as MCGA Example.

Next set up to display either of two picture files, based on the display’s color
capacity. The process is very similar, as it uses the same ewX command.
19. Position the insertion point where you want this picture displayed.

20. Call up Topic Editor with your hotkey, and select the Picture (using ewX
with MVBMP2) command.

21. Click on the Options button to bring up the Picture Options dialog box.

22. Click on the 8-bit Display file folder file folder tab. You define the file
and options for the 256—color picture here.

23. Click on the box with the ellipsis (...) after the Picture Filename to
display the Select Picture dialog box. Use this to select the
PICT256.BMP file. Click on OK when you are done, to return to the
Picture Options dialog box.

24. Click on the Store Picture in Baggage check box.
25. Click on the Caption button.
26. Enter Caption text Different Pictures Example (256).

27. Click on Center position. The resulting dialog box should look like
Figure 4-30.

{ewc vwrht2, TsTextButton, "Figure



28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38.
39.
40.
41.

41; 430" [Macro=JI( viewerht. mvb>SecWin', ‘figd 30")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return.

Next click on the 4-bit Display folder file folder tab.
Select the 16—color file to be displayed as PICT16.BMP.
Click on the Store Picture in Baggage check box.

Click on the Caption button.

Enter Caption text Different Pictures Example (16).
Click on Center position.

Click on OK to return.

Now click on the Any Display folder, and set the options that apply to all
systems.

Leave the Display Error Message ... box checked.

Select the desired position—left aligned.

Don’t select a file name or enter a caption here.

Click on OK in each dialog box until you return to Word.

The commands in your document should look very much like the
following:

Dither Example: {ewc MVBMP2, ViewerBmp2,

[caption="\pc;bDither Example"
dither]!pict256.bmp}

MCGA Example: {ewc MVBMP2, ViewerBmp2,

[mcga caption="\pc;bMCGA
Example"]!pict256.bmp}

Separate BMPs {ewc MVBMP2, ViewerBmp2,
Example: [256color caption="\pc;bSeparate

42.

43,
44,

BMPs Example (256)"]!pict256.bmp
[16¢color caption="\pc;bSeparate
BMPs Example (16)"]!pict16.bmp}

Now compile and test these commands. To test them you need to set your
system to display 16 colors. The first and third examples should look
extremely similar. The caption on the last picture indicates the mode you
are in—16 or 256 colors—because you use different captions for each
mode. The MCGA example should have an icon of a magnifying glass.

Click on the MCGA icon to see the picture in MCGA mode.

If you can display this demonstration in 16—color mode, you should see
fairly accurate colors in the Dither example, and distorted colors in the
other examples.



How It Works
The MVBMP2 function provides all of its capabilities through parameters
passed in the ewX command. The particular options used here are as follows.

U Dither specifies that 256 colors should be simulated in 16 colors by
combining two or more colors to approximate the appearance of a
missing color. The details of this process can be controlled by
clicking on the Dither button in the Picture Options dialog box. The
default values usually are acceptable.

U MCGA specifies that a simplified 16—color version of the picture
should be displayed, with a magnifying glass icon. Clicking on the
icon causes the picture to be displayed in MCGA mode (320x200
resolution with 16 colors).

U 256color specifies that the file, caption, and other options are
displayed on to systems capable of displaying 256 colors.

U 16color specifies that the file, caption, and other options are
displayed on to systems capable of displaying 16 colors.

Comment

What do you think happens with the last example on a system that displays
{vfld137438953484 } more than 256 colors{vfld4503058461491200}?
Because you didn’t specify an action for such systems, no picture is
displayed—even though it is more than capable of displaying your 256—color
bitmap. Fortunately, this problem can be easily solved. First specify the cases
you want to give special handling—in this case that’s the 16—color definition.
After the special cases, specify the Any Display setup with the options you
want for all other cases. The latter applies by default to any system that does
not fit a specified capacity. You usually specify the 16—color handling plus a
default to cover any greater capacity.

The file specified in these commands can be a SHG, DIB, BMP, or WMF
file.

You can’t use {vfld137438953484} MCGA {v{ld13331578486784} mode
for 256—color SHG files or popups. The MCGA button steals
{vfld137438953484 }mouse clicks{vfld3413442438365184}, which prevents
using them for other purposes.

Some video systems and drivers report to Viewer that they are capable of
handling 256 colors, even though {vfld137438953484}16—
color{vfld71919613918576640} operation has been selected. These systems
are treated as 256—color systems by Viewer.

Viewer’s BitEdit utility can convert 256—color pictures to 16 dithered
colors. This makes it possible to create picture files that take less space, use
simple display options, and retain nearly all of the quality of the 256—color
original.



4.7 Tips and Tricks

File Formats

= The MVBMP2 function supports DIB, BMP, SHG, and WMF file
formats. Note that there are versions of the DIB and WMF formats that
are not supported, such as RIFF. In addition, some programs create
BMPs in nonstandard formats. The nonstandard BMPs usually are not
recognized until Viewer refuses to display a file. They generally can be
converted by loading them into Windows Paintbrush and saving them
from that program. The Convert utility that is part of the Viewer package
handles most other conversions you require. It can convert RIFFs to
supported forms, for example.

= Convert and BitEdit can create DIB RLEs. These are smaller files than
the SHG format, and also display faster and use less memory.

File Handling

= Pictures that are pasted into the document are compressed in the way that
is specified for the entire document through Project Editor. If the same
picture is pasted in more than one place, each occurrence is included in
the compiled result. This greatly increases the size of the compiled file
but allows faster access to display the picture.

= Pictures that are included in Baggage are not compressed, regardless of
any {vfld137438953484}compression{vfld7882987656592752640}
specified for the application in Project Editor. The smallest supported file
formats, such as WMEF, should be used whenever possible.

= The best, if not only, program for converting bitmaps to metafiles is
reported to be Corel Draw. However, it is too expensive for most authors
to purchase for just the one function.

= Always place your files in the Baggage area, as you did in this chapter,
unless you have a very good reason for keeping them as separate files.
Having one large file makes your application easier to install. It also
helps prevent problems that would occur if one of your files is
accidentally erased or overwritten.

Picture & Monitor Resolutions

= Many Windows programs, including the Help system, stretch bitmaps
that were created in different resolutions to maintain the original logical
size. This attempt to be helpful generally creates strange—looking
pictures. The ewX command does not change the size of the picture. It
uses the original bitmap without regard to the logical size. This means
that a given bitmap occupies less of the screen on a 1024x768 (8514
mode) display than on a VGA. This is in a consistent proportion to the
rest of the Viewer window in all cases. Note that bmX commands do
cause bitmaps to be stretched.

= Many modern video boards support a wide variety of resolutions, from
640x480 to 1280x1024, and allow the user to change between them fairly
easily. If possible you should run your application in a wide variety of
resolutions (and color capacities) to make sure it always looks the way



you want. This lets you catch problems before your users see them.

= Scanners can capture images at far higher resolutions than the monitors
that display the pictures. Although Viewer usually displays these images
accurately, such images should be tested in a variety of display
resolutions.

= Viewer 1.0 and the Windows Help system used the Multiple Resolution
Bitmap Compiler
({vfld137438953482} MRBC{v{ld72057052872048640}) to get around
the problems of picture resolutions that were different from screen
resolutions. It allowed you to take versions of a bitmap that were created
in different resolutions and combine them into a single file. The proper
version of the image would be selected and displayed when the
application was executed. This utility and its file format are not
supported by Viewer 2.0 because they are no longer necessary.

Diagnosing Problems

= Ifan {vfld137438953484}error message {vfld72057052872048640}
displays instead of the expected picture, the message text should give you
a clue as to the reason. If it says the file could not be found, look at your
Baggage section through Project Editor. If there is a blank line before the
end, point to that entry and use the Project Editor menu to delete the
entry. Blank lines can be caused by partially creating a command and
then quitting. They have been known to cause all following lines in the
section to be ignored.

= Any time you have problems you can’t explain, try exiting Project Editor
and examining the MVP file in Notepad. If you see anything that looks
wrong, save a copy of the original file under a different name and edit the
project file through Notepad. Then re—execute Project Editor and see if
your application compiles and runs correctly.

= The compiler only reports
{vfld137438953484 } nonexistent context strings {vfld7882987656592752
640} that are used in standard hot spots. Context strings referenced in
SHG files, ewX commands, macros, and other places are not checked for
validity. Therefore, keep a list of all context strings, showing where they
are defined and where they are used. All hot spots and other methods of
executing jumps, popups, or macros should be tested as soon as possible.
They should all be retested before shipping your final product in case any
referenced topics were deleted.

= Some authors have reported problems using
{vfld137438953484} Paintbrush {v{ld72057052872048640} with 256—
color pictures. It loses the palette or reverses black and white colors. If
you run into this you might have to use Viewer’s BitEdit utility or some
other drawing program.



" Picture Type:

@i

8-bit Display T 4-bit Dizplay 1 Sony Player \| Any Dizplay \|

Picture Filename: Preview
| picturesichapd_1.bmp |_.I
i i E dit Picture
[% Store Picture in Baggage
[~ Allow User to View Bitmap in MCGA Mode Laption...

[ Dither Picture on 16-Color Dizplays Diher.

[% Display Error Mezsage If Can't Display Picture

TPosition | [ When Clicked, Run Command:

| Edit Command._. | Paste Command. .

| Cancel Help




Micivsull Word - CHAP4_1.RTF -

a| File BEdil View Insert Format  lools lable Window Help

Ak | e

CEE LaE [ EaE B=ERE parE aeE

[Normal | 2] Times New Nonen |[2] 10 [2] [(l2]ul [E|=1=1=] (2 0]zt [ ]
|1 |2 3 B |E IR

1L 1 1 1 1 1 : 1
= L

v 3 - - 3 - - F - - - ,1

Thie-ted-wae-bafore-the comenand ewd AVBLAFL, TiameBrgpl, I chapd - amp) Thie deitae-acter-the
cotarand vet-to chow-whas nappene, waircdudeloce of tazt hare. Tidyouderoms that Viswrar applicatiore:
canthe creatsddomn undes Windows 21 ce Mo dular- Windovee, and on S oy IAaltime dia CO-RZI-
Plezrers-and T andy-Wide s Information-Swetzmz? Tae Topuo Editor-command o vge dn ki Jam—Ta can
prepate-aicturs e Sor any cfthese ensiranments v

o
5

=1 [+]

[ Pg1 S2¢ 1 141 [ a1 nl  Cold [ 1o | | [HUM | |



{File Edit Bookmark Help

i l 2
Thiz text was before the command. This text is after the command. Just to show what
: happens, we include lots of
ext here. Did ywou know that
iewrer applications can he
created to man under
indors 3.1 or Modular
inndows, and on Bony
Multitvedia COROM Players §
atd Tandy Video Information i
Svstems? The Topic Editor  f
cottthatid you use in this
HowTo can prepate pictures
for aty of these




Microsoft Word - CHAPA 2.RTF

=| File

Edit Y¥Yiew Insert Format Tools Table

Window

Help

EIEEINEEERES

4 —

z
F—

HEE

man | |1I] |

HEI |Times Mew Ro
|1

BlEw]
=] [
|5

|2

4L 4L 4L

4L

4L

4L

1 x b Table




= Picture Caption

Caption Text:

E dit
Copd

T Text Algnment | [ Caplion Pozition

g Left E Above
RBight E Below
@ Center

" Color

Euregmund:lzg ™ Uze Default Color
Bac@rnund:lzg ™ Uze Default Color

1] .4 | Cancel Help




.................................

e e fewre: e L Dl e
{ MVBLPZ, { MVEMPZ, LVELPZ, - { MVBWMEZ,- i MYEMFZ, | MVBMPZ,-

ViewerImpld, ViewetBpld, - VeewerEmpd - WiewrerBrupd - ViewetBgl, - WiewreBmpl,-
! [caption="\pr;

| [eaption="pc, [caplior="gc, | [capton="tpe; | [ception="tpe; [caption="'¢e;
{ BEditMCut")le BEdiMPaste"] § bEditUndo"] | bFleVNew"|If | bFileDpen"]l
i editpastbmp}s | ecituado bmplal fdenewbmpls | Aleopenbmp)a |




I 27

EES

Edit Edit Edit Edit File File
Copy Cut Paste Undo MNew Open




l

{ewe MVBLPZ, ViewerBmpd, [caption="tpe; bEditNC opy" | editcopy bmp | { ewe LIVBLIPZ, -
ViewerBmpd, [caption="'pe; bEditMCut" T editeut binp } { ewe MVBLPZ, ViewetBmpd, -
[caption="tpc;bEditPaste" ]l editpast bevgp } { ew e MVBMPZ, ViewetBmp2,-
[caption="\pc;bEditWTndo" ]l editundo b } { ewe LMIVBMPZ, ViewetBmpd,-

[caption="vp e bF e\ ewr" | filenew b} { ewe MIVEBMEPZ, ViewetBmp2,-
[caption="vpc;bFle\dOpen" Hileopen bmp

il



E & 3 F D =

Edit Edit Edit Edit File File
Copy Cut Paste Undo New Open







{File Edit Bookmark Help

£

Edit Edit
Cut Paste

B E HDODE

Edit Edit Edit Edit File File
Cl]py" Cut Paste Undo New Open

EEEEDE




Yiewer Elements:

Popup Hot Spot 'Pop up a pic
Jurnp b 'jump_or_cammand'

Yiewer Topic Editor - CHAP4_3.MVYP

Hot Spot Text:

Fop up a picture

Hot Spot Type
’V ' Hormal @® Popup
oK' | Cancel | Help About___




Yiewer Topic Editor - CHAP4_3.MVYP

Yiewer Elements:

Context String:

Hidden Textiz: & Jump O Command(z]

| chy_pop_picture

Window:

MYB Filename:

Hot Spot Formatting
Ci'Mone
@ Underlined and Colored

114

Cancel | Help About___




= How-To 4.3 Demo |'

File Edit Bookmark Help
Euntentsléii% iiéﬂ:kl His!ur}ll €4 I I




= YWindow Properties n

Window Hame: |Seu:Win |

Left: Width:

Background Color: :B [¥ Use Default Color

B ackground Picture: | |_.I
Window Caption: |HDW-TD 4.3 Secondany “Window |
Initial State: |N|:urmal |£I

Stay On Top: |N|:| |£|

Minimize with MAIN:

Coordinate System: | Device-lndependent [1024 » 1EIE4]|;I

Panes.___ | Preview On Help

Master Pane




Yiewer Topic Editor - CHAP4_3.MVYP

Yiewer Elements:

Context String:

Hidden Textiz: & Jump O Command(z]

| chy_pop_picture

Window:

| Secfin

MYB Filename:

Hot Spot Formatting
Ci'Mone
@ Underlined and Colored

114

Cancel | Help About___




How-To 4.3 Demo |'

File Edit

Bookmark Help

Contents |

How-To 4.3 Secondary Wind
- ol




[ |0 | |1 | |2 | |2 ! |4
# XL XL XL XL XL XL XL XL
Popup-a-picturecty nop pdctuee]

|
L opup-a-picture-in-a-secondary-windowetr pop, picture3ecWin

Al ere MVEMPZ, ViewetBrp2, I chapd 3 hwp g



= Yiewer Topic Editor - CHAP4_4.MYP

Yiewer Elements:

F L |H|j t'rl-l )

Picture:

Jurnp b 'jump_or_cammand' - {broc: urtitied. brop}

"Hot Spot Type
® Momal O/ Popup O Mone

DOptions. .

1].4 Cancel | Help | About___




"i*éa%‘ss;& ¥y

O Embaddod Pans @ oy

8-bit Dizplay T 4-bit Dizplay 1 Sony Player \| Any Dizplay \|

Picture Filename: Preview
picturesichapd_4a.bmp L.
|_'I E dit Picture

" Position

Text Aligned

Cancel




Yiewer Topic Editor - CHAP4_4.MYP H

Yiewer Elements:

Jumnp b

pictureshchapd 4abmp

o okl ump

Hidden Textiz: & Jump O Command(z]
Context String:

| chy_jurmp |
Window:

| | [2]

MYB Filename:
| |

Hot Spot Formatting
Ci'Mone
@ Underlined and Colored

114

Cancel

| Help About___




= Paste Command

Inzerttem MenulD', "Hewltem|D', TtemCaption’, 7+
Inzerthd enu Menul D', “MenuCaption’, MenuPozit
[nzertSeparator MenulD’, SeparatorPosition]

|z ark[ M arker']

JurmpContents[ T ileFile']

¢ Jumpl Aindowtame', “Context']
JI[TitleFile:WindawM ame', "Tontext']
Jurnpk.epword[ TitleFile', “K.epward']

F.eylndex(]

 azterdzpectwindowM ame', Border<iwfidth, Bo
t aztert 5 A Color " indowkame', B, G. B]
MazterSACaolar M indowMame', B, G, B]

M CICommand(bwndContest, qchPath, " CIFaran
M et

M at[Candition]
PanelD[ TitleFilexwindowt ame’, Context: Panel

«| | -+

1] 4 | Cancel Help




= Edit Command

Edit Command: JumplD
TitleFile: |‘chapd_d.mt’

WindowM ame: | “main’

Context: "n::t:-:_iurrlF"

0K | Cancel

Contest: Specifies the contest sting of a topic




" Picture Type:

® Embedded Pane ) bmx

8-bit Display T 4-bit Dizplay 1 Sony Player \| Any Dizplay \|

Picture Filename: Preview
| picturesichapd_4b.bmp |_.I
i i E dit Picture
[T Store Picture in Baggage
[~ Allow User to View Bitmap in MCGA Mode Laption...

[ Dither Picture on 16-Color Dizplays Diher.

[% Display Error Mezsage If Can't Display Picture

TPosition | [ When Clicked, Run Command:

JumplD["chapd_4.mvbrmain', “chy_jump’]

| Edit Command._. | Paste Command. .

| Cancel Help




Lo | |1 | |2 | |2 | |4 |
. % L L L L L L L L L
{bume pictures'chapd 4 bmp} o, uop]
|

e MVEBLPZ ViewetBmpd - [macro="Jumpl D chapd dmrb=main' et jumph" ]
picturesichapd db bmp |

A Thisisthes ecotudtopic g



otspo or
{=| File Edit Window Help

Yiewer 2.0 PTK

Qe & || &

kultimedia Wigwer 20|  [Project Editor ' aveE dit BitE dit

Wiewer 2.0 Cormpiler

%

FalE dit Enn';;;art :‘ Yiewer 20 4P Compiler Help Authoring Help Read Me

-

Comman kultimedia allery
[Huestions Autharing
Guide

|[I|:I:H|:|tsp|:ut 3] Misibleslump:] [T op: 36 Botbam: 160 Left: 90 Right:1517]




Binding
Context String: |I:IZH YiEWET

Type: F"up up Attnhute m

Hotzpot Id: |Hutsput 1

Bounding Box

Left: Top: |26
Bight: ﬂuttum:




Wiewer 2.0

Compiler

........

BitE dit

Viewer 2.0 AF)

ompiler Help :.-’-'-

Lithoring H elpé

g

Fead Meé

Common
Cuesztions |

This picture has multiple hot spots

he authoring guide containg a lot of useful information for Viewer authors



" Picture Type:

@i

8-bit Display T 4-bit Dizplay 1 Sony Player \| Any Dizplay \|

Picture Filename: Preview
| pictureshpict256. brp |_.I
i i E dit Picture
[% Store Picture in Baggage
[~ Allow User to View Bitmap in MCGA Mode Laption...

[X Dither Picture on 16-Color Dizplays Dither. ..

[% Display Error Mezsage If Can't Display Picture

TPosition | [ When Clicked, Run Command:

| Edit Command._. | Paste Command. .

| Cancel Help




= Picture Caption

Caption Text:

Different Pictures Example [256)

T Text Algnment | [ Caplion Pozition

E Above
E Below

Euregmund:lzg ™ Uze Default Color
Bac@rnund:lzg ™ Uze Default Color

1] .4 | Cancel Help







This chapter demonstrates various techniques for making your application
more attractive or functional for the user. It also explains some of the
possible problems or limitations of these techniques, to help you avoid

problems.

This chapter shows you how to

i

Use different fonts and colors to emphasize text, to change the
appearance of hot spots, to change the colors of an entire pane or
window

Create a menu or toolbar item in Word to run the Windows
CharMap program

Use special characters to make your application even more
interesting by using the extended characters from standard fonts,
and the characters from fonts such as Symbol and Wingdings
Use window panes to display several related parts of your
application together

Use a custom popup pane to control the size and location of
popup windows

Use secondary windows to display information that remains
visible until the user closes its window

Use a non—scrolling region to display text or other material that
must stay in place as you scroll through the rest of the topic
Control word wrap to display a wide section of text that must
retain its formatting, using a horizontal scroll bar instead of
wrapping the text to fit the space available

Use tables to display information in rows and columns, and work
around the limited formatting options

Create a Welcome... topic to display information only when the
application is started

Start another program as the result of an action by the user



51 Howdoll ...

Use Different {vfld137438953482}Fonts{vfld11132555231232} and
{vfld137438953482}Colors{vfld3800470531342336}?

Complexity: EASY

Problem
I want to use different fonts and colors to emphasize portions of my text,
including choosing a unique appearance for hot spots.

Technique
You use standard features of Word to select various fonts and colors. You use
a combination of Word features and Topic Editor options to do the same thing
in hot spots. You also demonstrate how you can select different colors for the
background of selected windows or panes.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 1, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS 1. Create these four
directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPS 1 directory. Enter the name of your document file:
TEXT\CHAPS 1.RTF.

3. Use Project Editor to start Word and create your document.

Now you can proceed with this How—To. First, see how various common
fonts look in Viewer:
4. Choose the Times New Roman font using Word’s ribbon, and enter a line
of text in your document:
This is Times New Roman

5. Click on the Bold button on the ribbon, and type the line below. Click on
the button again to deselect Bold.
This is Times New Roman Bold

6. Repeat steps 4 and 5 for the Arial and Script fonts.

7. Select the Times New Roman font again, and type
This is Symbol:

8. Without moving the insertion point, select the
{vfld137438953482} Symbol {v{ld-9223349496866406400} font and
type the lowercase letters a through e. Press [ENTER] to go to the next
line.

9. Select the Times New Roman font again, and type
This is Wingdings:



10. Without moving the insertion point, select the
{vfld137438953482} Wingdings {v{ld-9223349496866406400} font and
type the lowercase letters a through e. Press [ENTER] to go to the next
line.

Now include some of the character formatting options, and see how they
look:
11. Select the Times New Roman font again, and type:

This shows subscript and superscript.

12. Select the word subscript, then choose Character from the Format menu.
Click on the arrow next to Super/subscript to display the choices. Select
Subscript, then click on OK.

13. Repeat step 12, but apply Superscript formatting to the word superscript.

14. On the next line, type the following text. Be sure to use lowercase, not
capitals, in the body of the sentence.
This shows small caps and all caps.

15. Apply the small caps format to the words small caps.
16. Apply the all caps format to the words all caps.

17. On the next line, type:
This is expanded spacing. This is condensed spacing.

18. Apply the expanded and condensed spacing formats to the respective
sentences. Your document should look like Figure 5-1.

{ewc vwrht2, TsTextButton, "Figure
51y 21" [Macro=JI(  viewerht.mvb>SecWin', ‘fig5 1")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

19. Now save your document file, and compile and test the application as
usual. (This procedure is described in detail in How—To 3.2.) You should
get a compiler warning, Warning 6176: No words in titled topics found to
index; .MVB file will lack full-text index. Ignore this for now.

20. Your Viewer window should look like Figure 5—2. Notice that the words
{vfld137438953484} subscript{v{ld13331578486784} and
{vfld137438953484} superscript{vfld13331578486784} appear even
with the rest of the line, the term {vfld2305858952132296716} all
caps{vfld2305857852620668928} is in lowercase, and the
{vfld137438953484}expanded{vfld13331578486784} and
{vfld137438953484} condensed {vfld8026821369691897856} spacing
sentences don’t look any different. These options are not supported by
Viewer.

{ewc vwrht2, TsTextButton, "Figure
51y 22" [Macro=JI( viewerht.mvb>SecWin', ‘fig5 2')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



Next demonstrate how to create different appearances for hot spots:

21.

22.
23.

24.
This

25.
26.
27.
28.
29.

30.
31.

32.
This

33.
34.

This

35.
36.

Double—click on the name of your document file to start Word again for
your document.

Drop down a couple of lines below the current text.

Choose Character from Word’s Format menu, and set the following
options: Font—Times New Roman, Points—15, Style—Bold & Italic.
Click on OK.

Type the text:
is a hot spot

Select the text you just typed and call up Topic Editor with your hotkey.
Select Hot spot (text) and click on OK.

Select the Jump to ... entry.

Enter ctx_dummy as the context string.

Select None as the Hot Spot Formatting. The dialog box should look like
Figure 5-3.

{ewc vwrht2, TsTextButton, "Figure
513" [Macro=JI( viewerht.mvb>SecWin', ‘fig5 3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK to return to Word.
Insert a blank line, and set the character format to Arial Font, 15 Points,
no Style selected, and Red Color. Click on OK.

Type the text:
is another hot spot

Repeat steps 25 through 30.

Create a new topic with the context string ctx_dummy, and type in the
following text. The document should look like Figure 5—4.
is the test topic.

{ewc vwrht2, TsTextButton, "Figure
51 /24" [Macro=JI(" viewerht.mvb>SecWin', ‘fig5 4")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Save the document as usual and compile your application.

Test your application. You see that the two hot spots have only the format
features you selected. They are not green or underlined, like normal hot
spots.

Finally, demonstrate changing the colors for the entire window:

37.
38.

In the Project Editor, choose Window Definitions from the Section menu.
Click on the Properties button to display the characteristics of the main



window.

39. Click on the Master Pane button to display the Master Pane Properties
dialog box.

40. Click on the ellipsis (...) next to
{vfld137438953482} Background Color{vfld-8970462913399619584},
then select a color that is distinct from your normal background.

41. Use the System Control Box to close the Properties window, then click
on OK to return to the main Project Editor window.

42. Save the project file, and compile and test your application.

43. You should see the same window as you had after step 36, but with the
new background color you selected.

How It Works

You can use any {vfld137438953484} font{v{ld-9042102693018992640} in a
Viewer application, as long as you are certain that the identical font is
installed on every system where your application is used. If there is no font
with the same name, Viewer selects the closest ANSI font—which probably
won’t look like you intended!

The warning message generated by the compiler in step 19
({vfld137438953484} Warning 6176 {vfld-8935279640822415360}) was
caused by not defining a title in this topic. Viewer provides full-text search
only for the text in topics with titles. This warning indicates that there
weren’t any topics with titles, so there won’t be any full-text search.

The author—defined hot spots have a percent sign (%) at the beginning of
the hidden text. This is the flag to the Viewer compiler that the standard
green underlined format should not be applied. That flag was generated when
you selected None for the Hot Spot Formatting option in Topic Editor.

The {vfld137438953484}background color {vfld-8935142201868943360}
for the window was actually set for the Master Pane because that pane
covered the entire window. If multiple panes are used, different background
colors can be set for each. The background color of any areas in the Viewer
window that are not covered by any panes can be controlled through the
Window Properties dialog box. This can be important when panes are resized
to fit topics that are smaller than the defined size of the pane—this exposes
the window area below. This is also important if you define panes that do not
cover the entire window surface at their full size.

Comment
Viewer provides far broader font support than Windows Help, which only
permits ANSI fonts and the Symbol font. The requirement that the fonts you
use are present on the users’ systems means that you should use only fonts
distributed with Windows 3.1, unless you really need other fonts and can
control the user’s environment. Distributing fonts with your application may
be legally restricted, and requires additional effort in the installation program.
Authors have reported finding more than one font called
“{vfld137438953484} Dingbats{v{ld-8935279640822415360},” each with
different characters. This can cause unexpected characters to appear in your
application.



Resist the urge to include many different fonts in your application. This
results in an appearance known as the “ransom note effect” because of the
similarity to a note made from words cut out of different parts of a magazine.
Many authors find that two fonts, such as Arial and Times New Roman, with
their bold and italic variants and different sizes, provide all the type styles
they need.

The Viewer feature limiting full-text search to topics with titles is
important—this is the only way you can control which text is searchable. You
can prevent popup windows or other special—purpose topics from being
displayed by the search function. This is why such topics usually are not
defined with titles. The search and related functions are explained in detail in
Chapter 11.

Support for author—defined hot spot appearance can be useful, but should
be used carefully. You have to be consistent, and should explain your
standard to the user at the beginning of the application. This support does not
provide for underlining or any character formatting that Viewer doesn’t
otherwise support.

Viewer does not support superscript, subscript, all caps, or expanded or
condensed spacing character formatting.

{vfld137438953484} Strikethrough {vfld-8935142201868943360} and
hidden formats have special meanings in Viewer—they are used for hot spots
—therefore they aren’t supported either. If you need superscript or subscript
text in your application, the easiest way is to create the needed text in the
Microsoft Equation application, then convert the results to a bitmap that can
be included. Similar techniques can be used for expanded or compressed
spacing. It is difficult to make these bitmaps line up properly with text. They
look best on lines by themselves.

Microsoft warns that author—defined hot spot colors may be hard to read
on VGA {vfld137438953484} gas plasma{vfld12232066859008} screens.
Users can cause author—defined colors to be ignored by adding the line
{vf1d2305865549202063371} Colors=NONE{ vfld-
9079242005371944960} to the [Multimedia Viewer] section of their
WIN.INI file. If you use nonstandard hot spots you should inform your users
how to do this, just in case they have a problem.

The color of hot spots can also be controlled by adding or changing
options in the user’s {vfld137438953482} WIN.INI{vfld-
9223349496866406400} file. This should only be used in special
circumstances, because it affects the appearance of every Viewer application.
These options are placed in the [Multimedia Viewer] section of the WIN.INI
file, in the form of command=(RRR, GGG, BBB) where RRR, GGG, BBB
are the red, green, and blue components of the desired color. Each value can
be in the range 0-255. The options are shown in Table 5-1.

Table 5-1. WIN.INI Options

Command Default Applies to ...

{vfld137438953483} JumpColor{vfld-8970462909104652288} Green
(0,255,0) Jump Hot Spots

{vfld137438953483 } IFJumpColor{v{ld-8970462909104652288} Same as
JumpColor Interfile Jump Hot Spots



{vfld137438953483} PopUpColor {vfld-8970462909104652288}

Same as
JumpColor Popup Hot Spots

{vfld137438953483} IFPopUpColor{vfld-35321248401588224} Same as
JumpColor Interfile Popup Hot Spots

{vfld137438953483 } MacroColor{vfld-35321248401588224} Same as
JumpColor Macro Command Hot Spots




52 Howdoll ...

Run CharMap from Within Word?
Complexity: INTERMEDIATE

Problem
I use various special characters frequently. I want to be able to run Windows
{vfld137438953482} CharMap {vfld7238128484948639744} easily from

Word to help me select the characters.

Technique
You create a simple macro that runs CharMap, then add it to Word’s menu or
toolbar.

This How—To does not require creating any new directories, project files
or document files. It updates the NORMAL.DOT template file in your
WINWORD directory. No sample files are provided on the CD disk because
this section requires choices of personal preference.

Steps

Firs‘t) you must make a safety copy of your current NORMAL.DOT file:

1. Start Windows File Manager, and select the directory where Word is
installed on your system. This is usually named WINWORD.

2. Select the file NORMAL.DOT.

Choose Copy from the File menu.

4. Enter NORMAL.SAV in the To field and click on OK.

98]

Now you can create a Word macro that starts the program:
5. Start Word. You don’t need to load a document or start a new one. Word
automatically starts a document named Document].

6. Choose Macro from the Tools menu.

7. Enter CharMap in the Macro Name field. Enter Start CharMap in the
Description field.

8. Click on the Edit button. Word displays a document window containing
the lines “Sub MAIN” and “End Sub” separated by a blank line.
9. On the blank line enter the following line, as shown in Figure 5-5.
Shell "charmap", 1

{ewc vwrht2, TsTextButton, "Figure
51 /25" [Macro=JI(" viewerht.mvb>SecWin', ‘fig5 5")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

10. Choose Close from the File menu. Your macro is now created.

11. To test your macro, choose Macro from the Tools menu, then select the
CharMap macro and click on the Run button.

Next add the macro to your menu. If you want to add it to your toolbar
instead, skip to step 19. You can add it to both if you want.



12. Choose Options from the Tools menu.
13. Scroll down to the Menus category and click on its icon.

14. Under the Menu heading select the T&ools entry, and add your new item
under that menu heading. Use a different one if you prefer—the rest of
the steps are the same.

15. Under the Macros heading select the first entry, with a series of dashes,
and click on the Add button. This inserts a separator line at the bottom of
the menu list.

16. Under Macros select the CharMap entry.

17. Change the Menu Text field from &Char Map to Char Ma&p. The letter
following the ampersand becomes the underlined letter that can be used
to select the menu item through the keyboard. This dialog box defaults to
using the first letter, but doesn’t check for conflicts. Since C is already
used for Calculate, use p.

18. Click on the Add button, then click on the Close button.

To add your macro to the toolbar:
19. Choose Options from the Tools menu.

20. Scroll to the toolbar category and click on its icon to select it.

21. Your current buttons, and the spaces between them, are listed under the
Tool to Change heading. Click on the down arrow to see the list. Select a
button to replace with your new CharMap button. You might consider the
other application buttons such as InsertChart. Be sure to select a button
you don’t use often!

22. Scroll through the list of icons under the Button heading, and select one
you want to represent CharMap. Be sure you don’t pick one you are
already using. That would be confusing. My personal choice is the icon
listed after the Bulleted List icon and before the Unindent icon.

23. Select the CharMap entry under the Macros heading.

24. Click on the Change button to make your changes take effect, then the
Close button.

After adding your macro to either or both places:
25. Exit Word as usual. Word displays a message box asking Do you want to
save the global glossary and command changes?

26. Click on the Yes button to save the changes you just made.

How It Works
The one—line macro starts CharMap. Because it’s the latest program to start,
this window displays on top of Word.

The next How—To demonstrates the use of CharMap.

Comment
The shell command in the macro can be used to start any program, using the
same syntax that can be used by choosing Run from the Program Manager’s



File menu. The command can refer to a Windows or DOS executable file, a
PIF file, or a data file with an extension that is associated with a program.
The directory path is required if the program or data file cannot be located by
Windows.

The same technique can be used to make it easy to start other programs
you use frequently while in Word, such as Notepad or a drawing or painting
program.

The techniques used in this How—To are explained in more detail in the
Word documentation. Separate documentation of WordBasic, the macro
language, is also available.

If you want to undo your changes, you can use File Manager to delete your
new NORMAL.DOT file and rename NORMAL.SAV to NORMAL.DOT.
This restores your previous macros, menus, and toolbar. You could also
choose Options from the Tools menu to reverse the effect of your changes
through steps similar to those above. When making global changes such as
these you should always plan how to undo them, by copying the file or
recording the back—out steps that would be required.



5.3 Howdoll ...

Use Special Characters?
Complexity: INTERMEDIATE

Problem

I want to use various

{vfld137438953482} special characters{vfld11132555231232}, including
some from the {vfld137438953482} Symbol{vfld11132555231232} and
{vfld137438953482} Wingdings {v{ld13228782739521536} fonts.

Technique
You use Windows CharMap to select the desired characters, and the standard
Windows technique for inserting them into your document. You also see
which characters need some extra effort to be used.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 3, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP5_3. Create these four
directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPS 3 directory. Enter the name of your document file
as TEXT\CHAP5_3.RTF.

3. Use the Project Editor to start Word and create your document.

Next use a few special characters and see what happens:
4. Select the Times New Roman font.
5. Enter this text in your document:

This is a copyright symbol:

6. Start Windows CharMap. If you did How—To 5.2, use the menu item or
toolbar icon you created. Otherwise use Program Manager by choosing
Run from the File menu and entering Charmap as the program to be run.

7. Select the Times New Roman font to be displayed.
8. Locate the {vfld137438953482}copyright symbol{vfld-
9223356093936173056}. It is three rows below the capital /.

9. Click on that symbol. An enlarged view displays to help you make sure
you selected the right character, and the keyboard code shows in the
lower-right corner of the window as “Alt+0169.”

10. Click on the Close button and return to Word. The insertion point should
still be immediately after the text you entered. If not, put it there.

11. If NumLock is off, turn it on by pressing the NumLock key.

12. Hold down [Alt] and type the digits 0169 on the numeric keypad on the
right side of your keyboard. The copyright symbol should appear in your



13.

document.
On the next line type:

These are from the Symbol font:

14.
15.

16.

17.

Start CharMap again, and select the Symbol font.

Locate the ® and © symbols. Note that there are two of each, one on the
last line and one on the line above.

Insert all four symbols in your document, using the same procedure as in
step 12. Be sure to select the Symbol font.

Select the Times New Roman font again, drop down another line and

type:

These are single quotes:

18.

19.

20.

21.

22.

23.

24.

Enter the quotes as [ALT]—0145 and [ALT]-0146. Your document should
look like Figure 5-6.

{ewc vwrht2, TsTextButton, "Figure
51 /26" [Macro=JI(" viewerht.mvb>SecWin', ‘fig5 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Save your document and compile and test it as usual. It should look like
Figure 5-7.

{ewc vwrht2, TsTextButton, "Figure
51 ¥27"[Macro=JI(" viewerht.mvb>SecWin', ‘fig5 7")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Everything looks the same, except the quote marks are missing! Word
uses special codes in the RTF file to represent certain characters,
including quotation marks. Viewer does not recognize these codes, so the
characters are ignored. Fortunately, you can fix this.

Start Notepad and load your document file: \VIEWERHT\CHAPS5 3\
TEXT\CHAPS5_3.RTF. The file should look like Figure 5-8.

{ewc vwrht2, TsTextButton, "Figure
51 /48" [Macro=JI( viewerht.mvb>SecWin', ‘fig5 8")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Near the end of the file you see your text These are single quotes. At the
end of that line you find the codes \lquote and \rquote. These are the
codes that Viewer can’t recognize.

Replace \ Iquote with \'91. The quote mark before the 91 is the standard
right single quotation mark, on the same key as the double quotation
mark. Be sure to remove the blank that followed the \Iquote code—this
space is part of the code.

Replace \rquote with \'92 similarly.



25. Save the file, exit Notepad, and use the Project Editor to compile and test
your application. The quotation marks should now be present!

How It Works

Windows allows you to enter any character, even if it is not represented on
the keyboard, by holding [ALT] while entering the four—digit code for the
desired character. This code always starts with a zero that must be entered.
The numbers must be entered on the numeric keypad while NumLock is on.
CharMap makes it easy to locate the desired characters and find their
keyboard codes.

Note that the codes for common characters are not always consistent
among fonts. The copyright symbols used here demonstrate this fact. This is
part of the reason why you should only use fonts that are certain to be present
on the users’ systems.

Comment

Viewer cannot use the RTF codes generated by Word for single and double
quotation marks, bullets, and em— and en—dashes. The Word codes and the
replacements needed for Viewer are shown in Table 5—2. Note that the codes
used by Word always include a single trailing blank that must be replaced as
part of the code.

Table 5-2. Viewer RTF Code Replacements

\'96

Typographic Code Word Code Viewer Code

Open {vfld137438953482}single quotation mark {vfld-8970462909104652288} ()
\Iquote \'91

Close {vfld137438953484}single quotation mark {vfld-8970462909104652288} (*)
\rquote \'92

Open {vfld137438953482}double quotation mark{vfld-8970462909104652288} ()
\Idblquote \'93

Close {vfld137438953484}double quotation mark {vfld-8970462909104652288} ()
\rdblquote \'04

Bullet (-)\bullet\'95 {v{ld137438953484} {v{1d-9223339601261756416}En dash (-)
\endash

ern{vfld137438953484} {vfld-35321248401588224}

Em dash (—)\emdash\'97{v{ld137438953484} {v{ld-35321248401588224}
§

The codes for an en—dash and em—dash are documented incorrectly in
Viewer’s Authoring Guide. They are correct here and in the Viewer Technical
Reference.

These replacements can be made in Word if you did not supress the File
Conversion dialog box. When loading the file, change the format in that
dialog box from RTF to Text Only. This leaves the RTF commands visible to



be updated. You can then use Word’s Search and Replace feature to make the
necessary changes. Be sure to save the file in Text Only format, using the
Save As menu item. The RTF files for real applications are normally far too
large for Notepad.



54 Howdoll ...

Use Window {vfld2305852355062530058}Panes{vfld-
9079245303906828288}?

Complexity: INTERMEDIATE

Problem
I want to display a picture and several sections of text at once, and keep them
coordinated.

Technique
You use the Project Editor to define two different pairs of regular panes, and
reduce the size of the master pane accordingly. You use topic entry
commands to cause the proper topics to be displayed.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First you must create the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 4, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS 4. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from the
VIEWERHT\HOWTOS\CHAPS\CHAPS5 4\PICTURES directory on the
CD-ROM to the VIEWERHT\CHAP5 4\PICTURES subdirectory on
your hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPS 4 directory. Enter the name of your document file
as TEXT\CHAP5_4.RTF.

Now you can proceed with this How—To:
4. Choose Window Definitions from the Section menu.

5. Click on the Properties button to display the main window properties.

6. Clear the Auto—Position check box. Click on the Master Pane button to
display the Master Pane Properties dialog box. Clear the Auto—Position
check box in this dialog box as well. Click on the Preview On button to
display the window.

7. Click in the master pane and the resizing handles appear. Drag the
handles so that the master pane covers an area in the lower half of the
center of the window, as shown in Figure 5-9.

{ewc vwrht2, TsTextButton, "Figure
51 /29" [Macro=JI(" viewerht.mvb>SecWin', ‘fig5 9")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

8. Close the window by using the System Control Box at the upper left



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

corner. Close the Window Properties dialog box the same way.

Click on the Panes file folder tab in the Window Definitions dialog box,
then click on the New button to define the first new pane. It is labelled
‘Panel’.

Click on the Properties button. Change the Pane Name to PanelA and
change the Border to (None). Leave the Dismiss When field set to
“When topic in master pane changes.”

Click on the Windows button to display the Pane Associations dialog
box.

Click on the Show in Window check box to set it, then click on the
Preview button to display the window.

Drag the pane so it covers the area to the left of the master pane. Close
the window as in step 8.

Repeat steps 9 through 13 to create pane PANE1B on the right side of the
master pane.

Repeat steps 9 through 13 to create PANE2A, covering from the upper
left corner of the window to the upper right corner of the master pane.

Repeat steps 9 through 13 to create PANE2B, covering the area to the
right of the master pane, from the top to the bottom of the window. The
window should look like Figure 5-10 when you are done. Note that the
title of PANE1B is covered by PANE2B.

{ewc vwrht2, TsTextButton, "Figure
51 210"[Macro=JI(" viewerht.mvb>SecWin', fig5 10")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Click on OK in Windows Definitions to return to the main Project Editor
window.

Choose Title Options from the Section menu and enter contents as the
Contents Topic. Click on OK.

Choose Groups from the Section menu to define a topic group.

Click on the New button to create a new group. Click on the Searchable
check box to clear it. This group is used only for a browse sequence, not
as a search group. Click on OK.

Save your project file, then use the Project Editor to start Word and
create your document.

Use Topic Editor to set the context string to contents.

Use Topic Editor to set the Topic Browse Sequence to Groupl and
Browse sequence to 010. (Refer to How—To 3.3 if you are not familiar
with this procedure.) The dialog box should look like Figure 5—11 when
you are done.

{ewc vwrht2, TsTextButton, "Figure
51y Y2 11"[Macro=JI( viewerht.mvb>SecWin', ‘fig5 11")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



24. Bring up Topic Editor and select the Topic Entry command. Click on the
Paste Command button and select the
{vfld137438953483} PanelD {vfld1477325272146509824} command.

25. Click on the Edit Command button, and set the options as follows.
Change Title File to gchPath (without quotes), WindowName to one
space (without quotes), Context to “topicla', Pane Name to “Panela’,
and PrintTabCopyOrder to 0. (Refer to How—To 3.6 if this procedure is
unfamiliar.) Click on OK.

26. Repeat steps 24 and 25 for context string “topiclb' in pane “Panelb'.

27. Enter the following text:
This is the first topic. It is displayed in the master pane.

28. Create a new topic, with context string topicla. Enter the following text:
This is part of the first topic. It is displayed in regular pane PanelA.

29. Create a new topic, with context string topiclb. Use Topic Editor to
insert a picture command with file name PICTURES\CHAPS5 4A.BMP,
check the Store in Baggage checkbox, and enter the following text as the
caption.

This picture goes with the first topic.[ENTER]It is displayed in regular
pane PanelB.

30. Repeat steps 22 through 29 to create similar topics with context strings
topic2, topic2a, and topic2b. Refer to panes Pane2A and Pane2B,
and picture file PICTURES\CHAP5 4B.BMP.

31. Save the document file, compile, and test as usual.

32. Use the Browse buttons to display the two sets of topics. They should
look like Figures 5-12 and 5-13.

{ewc vwrht2, TsTextButton, "Figure
51 212"[Macro=JI(" viewerht.mvb>SecWin', fig5 12")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

{ewc vwrht2, TsTextButton, "Figure
51 213"[Macro=JI(" viewerht.mvb>SecWin', fig5 13")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The first topic displays in the master pane by default, because you did not
force anything else to happen. This topic contains topic entry commands that
cause the other two topics to be displayed in their respective regular panes.
When you browse to the other topic, Viewer immediately clears the regular
panes associated with the previous topic because the panes were defined with
“Dismiss when topic in master pane changes.” The new topic displayed by
the browse sequence immediately executes its topic entry commands,
displaying the associated topics in their panes.



The value in the PrintTabCopyOrder field of the PanelD command
determines the sequence that panes are printed or copied. A value of zero
prevents them from being either printed or copied.

Comment

There can only be one master pane. It remains in a fixed location in a fixed
size unless a {vfld137438953483} PositionMaster{vfld12232066859008}
command is executed. Commands

{vfld2305858952132296715} MasterAspect{vfld2305857852620668928},
{vfld2305858952132296715} MasterNSRColor{vfld2305857852620668928},
and

{vfld2305858952132296715} MasterSRColor{vfld2305857852620668928}
can be executed to change the appearance or colors in the
{vf1d137438953482 }master pane{vfld2378181537062453248}. These
commands are explained in the Viewer Authoring Help file installed on your
system from the enclosed CD-ROM disk. These commands usually are
executed as part of a topic entry if they are needed. As shown in this How—
To, there can be many regular panes of assorted sizes and positions.

Notice that the text below the picture is
{vfld137438953484} cut oft{v{ld4081945508052992} in Figure 5-12.
Regular panes cannot show contents that are larger than the pane, and don’t
show scroll bars. Any excess is simply cut off, as shown.

When a list box is displayed, such as in the Paste Command operation, you
can jump to the desired part of the list by pressing the key for the first letter
of the desired command. For example, pressing p takes you directly to the
PanelD command.

When defining multiple topic entry commands, you can create each one
individually or combine them. To combine several commands in one entry
start by defining the first as usual. After the command has been edited, while
in the Topic Editor dialog box, position the insertion point at the beginning of
the next line, then repeat the process of Paste Command and Edit Command.



5.5 Howdoll ...

Use a {vfld2305852355062530058}Custom Popup{vfld-
9079245303906828288} Pane?

Complexity: INTERMEDIATE

Problem
I want to define a popup window, but I need to control its size and
position.

Technique
You define a custom popup in Project Editor, and force the topic to be
displayed in that popup.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First you must create the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 5, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS5 5. Create these four
directories for all projects, even if some are not needed.

2. Use Project Editor to create a new project file in your VIEWERHT\
CHAPS_5 directory. Enter the name of your document file as TEXT\
CHAP5_5.RTF.

Next define the custom popup window:
3. Choose Window Definitions from the Section menu.

4. Click on the Popups file folder tab, then click on the New button to
define a new popup window. Leave the default name, Popupl,
unchanged.

5. Click on the Properties button to view the window size, location and
colors. Leave all of these unchanged for now. Changes you might make
in a real application are explained in the Comment section at the end of
this section. Use the System Control Box at the upper left corner of the
window to return to the Window Definitions window. Click on OK to
return to the main Project Editor window.

Next create the document file to test the popup:
6. Save your project file, then use Project Editor to start Word and create
your document.
7. Enter the text:
Display a custom popup window

8. Select the text you just entered and call up Topic Editor.
9. Select the Hot spot (text) entry and click on OK.

10. Leave the Hot Spot Type as Normal. Custom popups are not defined as
Hot Spot Type Popup.



11. Select the Jump to... element, and click on Hidden Text is command.

12. Click on the Paste Command button and select the
{vfld137438953483 } PopuplID {v{ld1477325272146509824} command.

13. Click on the Edit Command button. Enter qchPath in the Title File field
and " ctx_popup' as the Context. Click on the arrow next to the Popup
Name field, and select Popupl. Click on OK twice to return to your
document.

14. Use Topic Editor to create a new topic with context string ctx_popup.
Enter the text:
This is the custom popup

15. Save the document file and compile and test your application as usual.
The result should look like Figure 5-14.

{ewc vwrht2, TsTextButton, "Figure
51y 214"[Macro=JI(" viewerht.mvb>SecWin', fig5 14")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works
The PopupID command is executed when the user clicks on the hot spot.
This command causes the specified topic to be displayed in the custom popup
window named in the command. All characteristics of the window were
defined through Project Editor dialog boxes.

The custom popup window is removed when the user clicks anywhere on
the screen, just as with standard popup windows.

Comment

The location and size of the custom popup window are relative to the entire
screen, and do not have to be located within the Viewer window at all. The
corresponding characteristics of the Viewer window should be considered
when setting these values. The custom popup definition is only used if the
relative positions are critical—otherwise the much easier standard default
popup is adequate. The size and position of the main window must be fixed
to assure the desired relative positions.



5.6 Howdoll ...

Use {vfld2305852355062530058}Secondary Windows{vfld-
9079245303906828288}?

Complexity: EASY

Problem
I want to display information in a window that can remain visible as long as
the user wants it to.

Technique
You define the secondary window through Project Editor, and use Topic
Editor to create the command in the document file to display a topic in that
window.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS5 6 and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS 6. Create these four
directories for all projects, even if some are not needed.

2. Use Project Editor to create a new project file in your VIEWERHT\
CHAPS_6 directory. Enter the name of your document file as TEXT\
CHAP5_6.RTF.

Next define the secondary window:
3. Choose Window Definitions from the Section menu.

4. Click on the New button to define a new window.

5. Click on the Properties button to view the window characteristics, as
shown in Figure 5-15.

{ewc vwrht2, TsTextButton, "Figure
51 /215"[Macro=JI(" viewerht. mvb>SecWin', "fig5 15")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

6. Leave the properties unchanged for this How—To. In a real application
you would set the size and location as needed for your material. Use the
System Control Box to close this dialog box, and click on OK to return to
the main Project Editor dialog box.

7. Save your project file by choosing Save from the File menu.

Next create the document:
8. Double—click on the name of your document file to start Word and create
the file.

9. Enter the hot spot text:



Display a secondary window

10. Select the text and call up Topic Editor. Select Hot Spot (text) and click
on OK.

11. Select the Jump to... element.

12. Enter context string ctx_second. Click on the arrow alongside the
Window field and select the secondary window (Winl). Click on OK to
return to the document.

13. Create a new topic with context string ctx_second. Enter the text:
This is being displayed in a secondary window.

14. Save the document file and compile and test the application as usual.
15. The result should look like Figure 5—16.

{ewc vwrht2, TsTextButton, "Figure
51y 216"[Macro=JI(" viewerht.mvb>SecWin', fig5 16")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

16. The secondary window remains in place if you click on the screen. It can
be minimized to an icon and restored. It can be closed through the
System Control Box at the upper left corner of the window. It closes
automatically when you close the main window.

How It Works

Specifying a window name in the hot spot definition causes Topic Editor to
create the hot spot for a secondary window by adding >windowname to the
command. This form is only used for secondary windows.

Comment

The window definition allows you to specify if the secondary window should
be minimized when the main window is minimized. This is normally set to
Yes to keep the windows coordinated. This would be changed if the
secondary window should appear independent to the user.

All commands in the
{vfld137438953484} Config section{vfld7237002585041797120} of the
project file are executed every time a secondary window is displayed, as well
as when the main window is displayed. These commands may perform
functions that can be repeated harmlessly, such as defining buttons or menu
items that are never changed later. The section could also include commands
that force a particular topic to be displayed, play sound or movie files, or
perform other actions that should not be repeated. The effect of this
reexecution may force you to choose between special effects when the
application is started or secondary windows. How—To 5.10 demonstrates a
case where this is a problem, with a solution.

The secondary window uses the same
{vfld137438953482}icon{v{ld7237002585041797120} as the main window.
The icon can be set through Project Editor, using the Title Options choice in
the Section menu.



57 Howdoll ...

Use a {vfld2305852355062530058}Non—Scrolling Region{vfld-
9079245303906828288}?

Complexity: EASY

Problem

I need to keep a section at the top of my topic visible as the user scrolls
through the text in the rest of the topic. I would like to make this region stand
out from the rest of the topic.

Technique
A non—scrolling region (NSR) is specified through special paragraph
formatting in the document. You also use a Viewer option to change the
background color of this region.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First prepare the directories and files, and change some properties of the

master pane:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 7, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS 7. Create these four
directories for all projects, even if some are not needed.

2. Use Project Editor to create a new project file in your VIEWERHT\
CHAPS5_7 directory. Enter the name of your document file as TEXT\
CHAP5_7.RTF.

3. Reduce the size of the master pane, as demonstrated in How—To 5.4. This
reduces the amount of text needed to cause scrolling.

4. While the Master Pane Properties dialog box is displayed, select a
{vfld137438953482} background color{vfld71919613918576640} for
the NSR, as shown in Figure 5-17. Return to the Project Editor main
window as you did in previous sections, then save your project file.

{ewc vwrht2, TsTextButton, "Figure
51y 217" [Macro=JI(" viewerht. mvb>SecWin', “fig5 17")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Next create the document file:

5. Use Project Editor to start Word and create your document.

6. Choose Paragraph from the Format menu, and select the
{vfld137438953483} Keep With Next{v{ld-35321252696555520} check
box. This is the formatting that defines an NSR. Click on OK.

7. Enter the text:

This text is in the non-scrolling region. It will remain at the top of the
master pane as the following text lines are scrolled.

8. Drop down to the next line, and turn off the Keep With Next formatting.



Enter the text:
This is line 1.

9. Insert additional lines, typing This is line x each time, until you have 30
lines.

10. Save your document file and compile and test your application as usual.

11. Scroll through the topic using the vertical scroll bar. The result should
look like Figure 5-18.

{ewc vwrht2, TsTextButton, "Figure
51y 218" [Macro=JI("viewerht.mvb>SecWin', fig5 18")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works
Viewer treats any paragraphs that have the Keep With Next paragraph
formatting as part of the non—scrolling region. This can include a Viewer
picture command—this has a graphic in the non—scrolling region.

The definition of the master pane includes specifying the NSR background
color, position, and border separator. The NSR can be located at the top or
bottom of the pane.

Comment
The background color of the NSR can be changed by executing the Viewer
{vfld137438953483 } MasterNSRColor{vfld12232066859008} command.
This would normally be included in topic entry commands. The NSR
position and border can similarly be changed by executing the Viewer
{vfld137438953483 } MasterAspect{v{ld8142789060096688128} command.
AIl NSR paragraphs must be located at the start of the topic, regardless of
the NSR position selected. There cannot be any scrolling paragraphs between
the NSR paragraphs.
The NSR is commonly used for displaying the topic title, table column
headings, or a graphic button bar with multiple hot spots.



5.8 Howdoll ...

Control {vfld2305852355062530058}Word Wrap{vfld-
9079245303906828288}?

Complexity: EASY

Problem
I want to display some text that is wider than the pane. I don’t want the words
to wrap around to following lines.

Technique

Non—wrapping text is defined by applying a special paragraph format option.
You create the standard directories, project file, and document file for this

How-To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS_8, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS_8. Create these four
directories for all projects, even if some are not needed.

2. Use Project Editor to create a new project file in your VIEWERHT\
CHAPS_8 directory. Enter the name of your document file as TEXT\
CHAP5_8.RTF.

Next create the document file:
3. Use Project Editor to start Word and create your document.

4. Choose Paragraph from the Format menu and select the
{vfld137438953483}Keep Lines Together{vfld1549382866184437760}
check box. Click on OK to return to the document.

5. Copy the text of steps 1 to 4 above into the document. Press [ENTER] as
needed to keep the lines from being excessively long.

6. Save your document file and compile and test your application as usual.

7. Reduce the size of the Viewer window until the horizontal scroll bar
appears. The window should look like Figure 5-19.

{ewc vwrht2, TsTextButton, "Figure
51 219" [Macro=JI(" viewerht.mvb>SecWin', "fig5 19')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works
Viewer treats any paragraphs that have the Keep Lines Together paragraph
formatting as non—wrapping text. This can include a Viewer picture
command—this has a graphic that can be scrolled horizontally.

Wrapping and non—wrapping paragraphs can be mixed within a topic if
desired. Viewer displays a horizontal {vfld137438953482}scroll
bar {vfld3940108508069888} only if there is material to be displayed that is



wider than the master pane.

Comment
Non—wrapping text cannot be used within regular panes. Any text that won’t
fit within the pane is dropped.

This feature is commonly used to display tables or similar material that
must retain its relative positions to be meaningful. It can also be used for
topics that contain long lines of definitions—the desired line can be located
by the left portion of the material, and the rest can be read by scrolling. This
can be especially useful for technical material such as computer
programming that may be copied into another document.

Tables are never wrapped, regardless of formatting.



5.9 Howdoll ...

Use {vfld2305852355062530058} Tables{vfld-9079245303906828288} to
Show Information?

Complexity: INTERMEDIATE

Problem
I have some information that I want to display in a table. How can I make
this look good?

Technique

You use the standard Word support for tables; there are some formatting

options that Viewer does not support, as well as some limited workarounds.
You create the standard directories, project file and document file for this

How—To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 9, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS 9. Create these four
directories for all projects, even if some are not needed.

2. Use Project Editor to create a new project file in your VIEWERHT\
CHAPS5_9 directory. Enter the name of your document file as TEXT\
CHAP5_9.RTF.

Next create the document file:
3. Use Project Editor to start Word and create your document.

4. Choose Insert Table from the Table menu and create a table with two
columns and two rows. Leave the Column Width at Automatic.

5. Insert text in each cell, using appropriate forms of the following:
This text is in the cell in the first row, first column.

6. Insert a few blank lines, then copy the entire table created in steps 4 and
5 at the new insertion point.

7. Select the entire first table, then choose Border from the Format menu.
Select Preset Grid and click on OK.

8. Select the first cell of the second table, then choose Border from the
Format menu. Select Preset Box and click on OK. Repeat this for each
cell in the table.

9. Insert a few blank lines, then choose Paragraph from the Format menu.
Set Indentation to 2 inches from the left, and -2 inches for the first line.
Click on the Tabs button and change the first tab stop to 2 inches. Click
on OK to return to Word.

10. Enter the following text:

Row 1[TAB]This text will wrap as necessary if you reduce the size of
the window.[ENTER]
Row 2[TAB]This text will also wrap as required. Give it a try! Shrink



the window and see what happens.[ENTER]

11. Save your document file, and compile and test your application as usual.
Ignore warning message 4652 from the compiler. See what borders
appear in the first two tables.

12. Reduce the size of the Viewer window and see what each table looks
like. The window should look like Figure 5-20.

{ewc vwrht2, TsTextButton, "Figure
51 /20" [Macro=JI(" viewerht.mvb>SecWin', fig5 20")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The first table generates a compiler message:
{vf1d2305858952132296716} Warning 4652{vfld-9079242005371944960}:
Table formatting too complex. This is because Viewer does not support grid
borders in a table.

No {vfld137438953484}borders{v{ld-35322352208183296} appear in the
second table either, although there aren’t any messages. Viewer doesn’t
support borders around table cells, either!

The text in the tables doesn’t wrap as you reduce the size of the window. A
horizontal scroll bar appears when needed, instead.

The text in the last section does wrap as the window size is reduced. This
technique works best for two—column tables, because only the text in the last
“column” wraps.

Comment

There is no way to create borders around table cells in Viewer. Borders can
only be created around the outside of the table. You should leave enough
space between columns so that the entries remain distinct.



5.10 Howdoll ...

Create a Welcome... Topic?
Complexity: INTERMEDIATE

Problem
I want to create a special screen that appears when my application is loaded
to welcome the user and provide some special instructions.

Technique
You demonstrate two different methods for performing this task. You explain
when each would be appropriate in the following Comment section.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS5 10, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS 10. Create these four
directories for all projects, even if some are not needed.

2. Use Project Editor to create a new project file in your VIEWERHT\
CHAPS5_10 directory. Enter the name of your document file as TEXT\
CHAP5_10.RTF.

Next use a Viewer command in the project file to display the topic:
3. Choose Title Options from the Section menu.

4. Enter contents in the Contents Topic field and click on OK.
5. Choose Groups from the Section menu.
6

Click on the New button and clear the Searchable check box. Click on
OK.
Choose Config from the Section menu.

Place the insertion point after the existing script lines and click on the
Paste Command button. Select the
{vfld137438953483 } JumpID {vfld1477325272146509824} command
and click on OK.

9. Click on the Edit Command button, and set the fields as follows: Enter
gchPath as the TitleFile, without quotes. Enter one space as the Window
Name, without quotes, and enter " first' as the Context. Click on OK.

10. Your configuration script should look like Figure 5-21.

{ewc vwrht2, TsTextButton, "Figure
51y 221"[Macro=JI(" viewerht.mvb>SecWin', fig5 21")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

11. Save your project file.
12. Use Project Editor to start Word and create your document. Use Topic



Editor to create a new topic with context string contents. Be sure to
delete the page break that is created before your topic.

13. Use Topic Editor to add this topic to Browse group Groupl, sequence
010.

14. Enter text:
This is the Contents topic.

15. Create a new topic with context string first. Enter text:
WELCOME TO VIEWER!

16. Create a new topic with context string second. Add this topic to Browse
group Groupl, sequence 020. Enter the text below.
This is the second topic.

17. Your document should look like Figure 5-22. Save your document file,
and compile and test your application as usual.

{ewc vwrht2, TsTextButton, "Figure
51 /22" [Macro=JI(" viewerht. mvb>SecWin', fig5 22")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

18. You should be greeted with the Welcome topic. Click on the Contents
button, and you should see the Contents topic. The Browse buttons
should then take you between the Contents and Second topics without
redisplaying the Welcome topic.

Next create the same effect with a Topic Entry command:
19. Choose Config from the Section menu.

20. Erase the command you entered earlier by selecting that command and
pressing [DEL]. Click on OK.

21. Save the project file, then double—click on the name of the document file
to start Word.

22. Position the insertion point after the existing footnote codes (#+) at the
beginning of the Contents topic. Insert a Topic Entry command here. The
command is so complex that it is easier to insert the footnote directly,
without the assistance of Topic Editor.

23. Choose {vfld137438953482}Footnote{v{ld12232066859008} from the
Insert menu. Click on the {vfld137438953483} Custom Footnote {vfld-
35321252696555520} Mark check box, and enter an exclamation point
(1) in the field following the check box. Click on OK.

24. Word opens the Footnote window at the bottom of your screen, with the
insertion point positioned immediately after an exclamation point. Enter
the following text on a single line:

I)fThen(Not(IsMark("ﬁrst time")),"SaveMark(" first time');JumplD(qchPath, first')"

25. Be certain that you enter that text exactly as shown. Your document



should look like Figure 5-23.

{ewc vwrht2, TsTextButton, "Figure
51 223"[Macro=JI(" viewerht.mvb>SecWin', fig5 23")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

26. Click on the Close button at the top of the Footnote window.

27. Save your document file, and compile and test your application as usual.
It should operate exactly as the first version did.

How It Works

The first version, using the command in the Config section, has the simplest
operation. When Viewer first loads an application, it executes the commands
listed in the Config section script. It then defaults to displaying the Contents
topic if one is specified. If none is specified, it defaults to displaying the first
topic in the file. You inserted a command at the end of that script that forces a
jump to the topic with context string first. This overrides the default actions.
You did not provide any other way to display this topic, so once you left it
you did not have any visible way to return. You could return by using the
History button.

The second version is far more complex. It lets Viewer display the
Contents topic, causing the Topic Entry commands you entered with the
exclamation point footnote to be executed. The operation of this multilevel
command proceeds as follows:

1. The {vfld137438953483}1fThen{v{ld801785328040935424}()
command has two parts—a condition to be tested, and one or more
commands to be executed if the condition is true.

2. The condition—{vfld137438953483} Not{v{ld12232066859008}
({vfld137438953483} IsMark {v{ld-9223356093936173056} ("first
time"))—checks to see if a mark with the name "first time" has been
saved. The Not() portion means that the commands in the second part
execute only if the mark has not been saved.

3. [Ifthe condition is true (i.e., the mark has not been saved) Viewer
executes two commands. The first saves the “first time” mark, and the
second forces a jump to the topic with context string first.

The first time the Contents topic is displayed, the mark has not been saved
and so the commands are executed. Every time the Contents topic is
displayed thereafter, the mark has been saved and the commands are
bypassed. The user cannot see or change these marks.

Comment

There is one problem with the simpler first method. All commands in the
Config section script are executed when a secondary window is displayed. As
a result, using this method in an application that uses secondary windows
would cause the main window to redisplay the Welcome topic whenever a
secondary window is displayed. This would certainly confuse the user! Use
the second method if you have secondary windows, and the first method



otherwise.

The topic entry command in the second method is one of the few you are
likely to encounter that is too complex for Topic Editor. This uses commands
nested within commands as well as multiple commands separated by a
semicolon.

The topic entry command demonstrates a valuable technique for
controlling the operation of an application. Marks can be saved and removed
as desired, thus prohibiting or permitting other actions. This could, for
example, be used in a training application to prevent the user from displaying
certain material more than once.



5.1 Howdol ...
Start Another Program?
Complexity: EASY

Problem
I need to start other programs from within Viewer, as a result of actions by
the user.

Technique
You demonstrate starting another program when the user clicks on an author—
defined button, clicks on a hot spot, or displays a particular topic.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to Sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 11, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAPS 11. Create these four
directories for all projects, even if some are not needed.

2. Use Project Editor to create a new project file in your VIEWERHT\
CHAPS_11 directory. Enter the name of your document file as TEXT\
CHAP5_11.RTF.

Next define the new button:

3. Choose Config from the Section menu. Position the insertion point on the
blank line after the existing commands.

4. Click on the Paste command button and select the
{vfld137438953483} CreateButton {vfld1477325272146509824}
command. Click on OK.

5. Click on the Edit Command button, and enter ~btn_run' as the
ButtonID, and * &Run' as the ButtonCaption. Be sure to include the left
and right single quotes around each entry. Click on the down arrow
alongside the Command field and select the ExecProgram command.
Edit the entry, replacing the term "CommandLine' with "sol.exe", and
replacing ProgramState with 0. Include the double quotes around the
program name instead of the single quotes inserted by Topic Editor. Click
on OK.

6. Choose Groups from the Section menu. Click on the New button to
define Group1, and clear the Searchable check box. Click on OK.

7. Save your project file.

Next create the document file and a hot spot:
8. Use Project Editor to start Word and create your document

9. Use Topic Editor to add this topic to Browse Sequence group Groupl
with sequence number 010.



10. Drop down a line and enter the text:
Start Solitaire

11. Select the text you just entered, call up Topic Editor, and select Hot Spot
(text). Select the Jump to element.

12. Click on Hidden Text is Command.

13. Click on the Paste Command button, select the
{vf1d137438953483} ExecProgram {v{ld1477325272146509824}

command, and click on OK.

14. Click on the Edit Command button, and enter ~sol.exe' as the
CommandLine, and O as the ProgramState. (You can click on the down
arrow and select the ProgramState value from the drop—down list if
desired.) Click on OK.

Next create a topic that runs a program every time it’s displayed:
15. Insert a new topic with context string second.

16. Use Topic Editor to add this topic to Browse Sequence group Groupl
with sequence number 020.

17. Use Topic Editor to insert a Topic Entry command. Paste in the
ExecProgram command, edit it as in step 14, and click on OK. Enter the
text:

Solitaire just started!

18. Save your document file, and compile and test your application as usual.
You should be able to start the Solitaire game by clicking on the new Run
button, by clicking on the hot spot, or by using the Browse buttons to
switch to the second topic. (Close each version of Solitaire as it starts to
keep your system from becoming cluttered.) Your test should look like
Figure 5-24.

{ewc vwrht2, TsTextButton, "Figure
5i; 224" [Macro=JI(" viewerht.mvb>SecWin', "fig5 24')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works
The Viewer {vfld137438953483} ExecProgram{v{ld973058453322858496}
command executes any Windows or DOS program. The CommandLine
parameter follows the same rules as the Program Manager’s File, Run menu
entry: you can list an executable file, a PIF file, or a data file with an
extension that has been associated with an executable program. The
ProgramState parameter causes the program to be started in normal,
maximized, or minimized mode.

The {vfld137438953483} CreateButton{v{ld3940108508069888}
command uses three parameters—an internal name for the button, which can
be used to remove or redefine the button; a caption for the button; and a



command to be executed when the button is selected.

Comment
It is possible to coordinate the actions of a Viewer application and a separate
program, but this requires significant programming efforts.

As you saw, the definitions for each method of starting a program—
through a button, a hot spot, or a Topic Entry command—are extremely
similar. The same concepts apply to executing any other commands through
the same methods.



5.12 Tips and Tricks

=

You can create a

formatted {vfld137438953482}table{v{ld4926370438184960} in Excel,
and insert it in your Word file as an object. Viewer treats this as an pasted
picture that retains all the original appearance.

Superscript, subscript, and other unsupported character formats can be
included by creating bitmap images of the desired text or by inserting
objects. Microsoft’s Equation Editor is useful for creating superscript and
subscript text.

Although Word only lists fonts supported by your printer, you can type in
the name of any other font supported by Viewer. For example, the
{vfld137438953482} System font{v{ld4221583484780544} is used in the
electronic book on the enclosed CD—ROM disk.

Viewer does not support Word’s default

{vfld137438953484 }tabs {vfld13331578486784}; you must define tabs
through Word’s menu. This is also needed if you use
{vfld137438953484 }hanging indents{vfld13331578486784}, such as in
{vfld137438953484 } bulleted lists {vfld4926370438184960}.

Word places a {vfld137438953484} border{v{ld4926370438184960}
around consecutive paragraphs with common formats; Viewer places
borders around each paragraph individually. Use soft carriage returns to
get the same effect.

The techniques used throughout this chapter can serve many other
purposes. For example, they form much of the basis for developing a
custom author—designed user interface.

The conditional commands used in How—To 5.10 can provide a powerful
capability for controlling a Viewer application. Besides Viewer
commands such as IsMark, you can also execute any external commands
or Windows {vfld137438953482} API1{v{ld4926370438184960}
functions that return a True/False value. Any such external routines must
be defined with a RegisterRoutine command.

Examine any Viewer applications you can try out, and try to determine
how the author created various effects. You will find that some of the
most exciting applications use techniques than can be performed with
little or no programming. The tools demonstrated here can be used in
many ways. They are limited only by your imagination.



[0 | [1 | |2 | |3

[ # L L L L L L L

A Thiz1s-Times-Mew-Roman
This-is- Times-INew Roman Bold.y
This-is-Arial g
This-is-Arial-Bold.q|

Mhis s Fonl T

Jhis " Benipl " Beld. T
This-1s-Symbol-cfy &
Thiz-1z-WingDings:- €542 T M9
¥his-shnws-guhgmﬂt-and-sup eraceipt o
Thiz-shows SMALL-CAPS-and ATLL-CAPRY
This-is-expanded-spacing. Thesrndredgeend]
T



How-To 6.1 Demo
| File Edit Bookmark Help

hisis Arial.
his is Arial Bold.

his shows subszcript and superscript.
{This shows smau cars and all caps.
{This is expanded spacing, This is condensed spacing,




Yiewer Topic Editor - CHAPS _1.MYP

Yiewer Elements:

Hidden Textiz: & Jump O Command(z]

Jurnp ko et dumnoy’

Context String:

| chy_durnmy |
Window:

| | [2]

MYB Filename:
| |

Hot Spot Formatting
(™ Mone
! Underlined and Colored

1].4 Cancel | Help About___




Micivsull Word - CHAPS_1.RTF -
a| File BEdil View Insert Format  lools lable Window Help

o8] [tRl@] [# [=EEx] Bl==RIE] [E=lrE] w==)
|Nurmd |E TimNcwﬂunnnlElﬂ Elﬂlfl‘!”g‘%lzlilmflfltlm
11 1* ] 14 |E |

1L 1 1 1 1 1 : 1

L]
1 L = ) T -y m = T s T M = [ ﬂ
A his 1s- Times T =w-Somman. =
This is Tiraes New Fomarr Bald
Thisis Arialq
This-is Arial-Bold.y]
oo Fonil ¥
Hin'ns Bentd” Baldl 7
Uhig-iz-Symbol- oy S|
Thisnc - Winz g £ & TR Y
il

This $hows g amped wnd FHEEIEL T
This shows SMALL-CAPS and AT CATH]
This is expended spacing. Thuscorhwslge

1

Tl- [ L]
Thisixerd ol x@olticss, dunmg)
1his-is-anotherhot-epotosss: st

Ak | e

[ Pg1 S2¢ 1 42 A nl  Cold [ 1o | | [HUM | |



| Start I | Step I | Step SUBs I | Trace I E

Global: CharMap

Sub MATNY
=+ Zhell"chatmap", 1
End-Zubq

{el |




[0 [ | [2

H 1
[: L L L L L L L

% Thiz-1z-a-copyright-symb ol - €A
Theze-are-trom-the-Symbolfont-BEE ST
These-are-single-quotes-'

1l




5 How-To 5.3 Demo
| File Edit Bookmark Help

15 15 a copynght symbol ©
ese are from the Symbol font, EEEE
ese are single quotes:




= DIEDad AH H -

File Edit Search Help

{\rtfivansi ‘deff@vdeflang1824{  Fonttbl{\FOfroman Times Hew Roman;}{\Ff1}
ZWred255h greenBiblue25s ;v red255 green B blued; \red255 green255\blued; \red2!
wred192hgreent1923blue192; H{vstylesheet{\fs2841ang1833 ‘\snextd Hormal;}}:{®
wpaperwi2248\paperh15848\margl1808\imargr18 80\ margt1448\margb1 448\ gutterd
Y 'ap

\par }{\plain \1lang1822 These are from the Symbol font: }{‘plain “F1ilang
Ypar }{\plain 31ang1822 These are single quotes: }{%\plain %1lang1833 ‘\lgu:
wWpar }

Wpar }




— How-To 5.4 Demao l__

Cantents ] Go Dock | Mistory f Semeh ] < [ - |




How-To 5.4 Demao

Eunh:nlsl Inden Iﬁu -[I_m:kl | liskory l Geaich I < I I
Hang A HaneH




= Yiewer Topic Editor - CHAPS _4.MYP

Yiewer Elements:

§T|_| iC

Topic Browse Sequence:

|I3r|:|up'|

| [#]

Browse Sequence Number:

Topic Groups:

| [#]

| Inzert Group

| Delete Group

1].4 Cancel

| Help

| About. .




How-To 5.4 Demao

File Edil Buouokinark Help

Emtcntslii-.@ _i__E_s;q*.in Hizkary I Ex: I r}

83 e af the st
cpie. I is disazyed i

recular pate Paneld

Lhug 1z the brat tepae. 1212 diznlzyed mnths
i pane

lhic
picture
goes with
thc firat
topic.

It is
displayed
In reqular




How-To 5.4 Demao

File Edil Buouokinark Help
Emtcntsll':‘u Eﬂﬂkl Hiztary I £ I EE
g iz et ofthe zecond topic, Ihie displaved i cegular pane FaneZf

This
piclure
goes with
Lhuz 1z the second topie. 1t dizplayzdm  [the seonnn
E i = topic.

che frain pans. b
digplayed
in regular
panc
FancD,




= How-To 5.5 Demo |‘r -

File Edit Bookmark Help
Euntentsléii% iiéﬂ:kl His!ur}ll €4 I I -

[Cizplay a custom popup window




= YWindow Properties

Height:
width:

Background Color: :B [¥ Use Default Color

B ackground Picture: |

Window Caption: |New Window

Initial State: | Maormal

Stay On Top: |N|:|
Minimize with MAIN: o

(el el L]

Coordinate System: | Device-lndependent [1024 » 1EIE4]|;I

Panes.___ |Pl£=1iew On | Help

Master Pane




= How-To 5.6 Demo |v -
File Edit Bookmark Help

Eﬂntentsléﬁa %&aﬁql Hiséury I £ I 23

Dizplay a secondary window

IThis iz being
izplaved in a
econdary window




= Master Pane Properties n

Pane Hame: | b azter Pane |

Top: Max Height:
Left: Max Width:

[T Auto-Position

Background Color: :B [X Use Default Color
Border: |EIne-F'i:-ceI |£I

" Non-5crolling Region
Background Color: :B [ Use Default Color
Position: |T|:||:| |£|
Separator: |EInE-F'i:-ceI |£|

" Minimum Margin

Horizontal: IZI Yertical: IZI

Coordinate Spstem: | Device-lndependent [1024 » 1024] |_I

Window | Preview On Help




= How-To &.7 Dema
File Edil Buouokinark Help




{File Edit Bookmark Help
Euntentslﬁu Ea-::kl History I £

Use the Windows File Manager to create your project directory, VIEWE
fubdirectories — TEXT, SOUNDS, PICTURES, MOVIES — under CHAPS|
even if some are not needed.
2. Tze Viewer's Project Editor to create a new project file in your VIE

| nter the name of your document file as TEXTW HATDS 8 ETE.

Tze the Project Editor to start Word and create vour document.

Choose Paragraph from the Format mens and select the Keep Lines To




= D D 0 Demo hd
File Edit Bookmark Help
Euntentsléii% iiéﬂ:kl Hiztory I €4 I I

hiz text iz in the cell in the first row, first column. This text is inthe o

colutty.
his text iz in the cell in the second row, first This text iz it the ¢
ol colutty.

hiz text iz in the cell in the first row, first column. This text is inthe o

columi.
his text iz in the cell in the second row, first This text iz it the ¢
columi. columi.
Fowrl Thiz text will wrap as necessaty if
you reduce the size of the window.
Fowr 2 Thiz text will alzo wrap as reguited.

Crivre it a try! Sheind the witdow
atid see what happens.




[CONFIG] - Configuration Script

Configuration Script:

Std20menus(]
Std20B uttarizl]

RegzterlRouting] ' mvbmp2”, "CoppBmp"’, "w=U55"]
ReqisterRoutine] myvmci2”’, "MCICommand”, "LU555"]

ReqisterF outing] rveftzui2”, "SearchDialog®, "15U"]
JumplD[gchPath, Tfrst')

Edit Command._. Paste Command. .




=| File Edit View Insert Format

Tools

Table

Windowr

Help

-

ks
-

41—

z
T —

HEE | E AR EEEE

CI=[=] [#E]E] %
|Nurmal

New Roman | |'|2 |

871y

| |Times
|0 | 11 ! |2 ]

¥
|2

BEEREE
|4 5 |+

[ ™ 4 4 4 4 4
r

4

4

4

4 4

#+Thiz-is-the-Contents-topic

#WELCONE-TO-VIEWEE !

#+Thiz-1s-the-second-topic. Y
1

Footnotes

Close

#contents]
*Croupl:0109
Atirst]]
#zecond]
Hroup 0209
l

«| |

| Pg 3 Sec 1 3¢ 3 [ AE1.2" Ln 2

Cal 1

| 100%

UM |



= DS 0 Ord AF 1.H bl I
=| File Edit Yiew Inset Format Tools Table Window Help S
Dl=]=] [(* =] 4 [E]EEE] Bl=lEeu] [B=v]S
|Nurmal ||TimesNewHuman||12 | BI..:"'IL'I t |t
Ef—— 1 e e th———t 1t

A+ Thig-iz-the-Contents-topic. Y

#WELCOME-TO-VIEWEE Y

#+Thiz-1s-the-second-topic. Y

il
Footnotes Cloze| *

#contents]

*roupl:0109

"TfThen(H ot(Tsh arky " first time "), Savellarly first-time") JumpID( gehPath, “firsth ")

Ftirat]]

#zecond|

Hroup 0209

1l +
«| | -

| Pg 3 Sec 1 3¢ 3 | AL 12"

Ln 2

Cal 1

| 100%

UM |



How-To 5.11 Demo

File Edit

Bookmark Help

Ftart Solitaire

: Game Help







One of the most important parts of a Viewer application is the user interface
—the tools you providefor the user to interact with the application. Viewer
lets you control much of that interface very easily. The major parts of the
interface that you can control are

U The {vfld137438953482} button bar{vfld4363420484763648}.
Viewer provides a standard set of buttons. You can include all,
some, or none of the standard buttons. You can also add your
own.

U The {vfld137438953482} menu bar{v{ld4363420484763648}.
Viewer provides a standard set of menu titles and items. You can
include all, some, or none of the standard menu titles and items.
You can also add your own menu titles and items.

U {vfld137438953482} Accelerator keys{vfld12612888294745702
40}. You can define combinations of keys to execute any Viewer
command.

U {vfld137438953482} Graphic controls{vfld4363420484763648}.
You can use your own pictures in place of or in addition to the
standard menu and button interface.

U Adaptable controls. You can replace, change, remove, enable,
and disable standard and author—defined buttons, menus, and
picture controls while the application is viewed, to reflect
changes in the options available based on the user’s actions or
the portion of the application currently displayed.

Viewer gives you great flexibility, limited only by your imagination. Any
Viewer command can be executed using buttons, menus, picture controls, or
accelerator keys. You can also use text or graphic hot spots within the topics
to execute these commands. Graphic controls can be positioned in several
different ways—in the non—scrolling region of the master pane, in the body
of the master pane, in regular panes, in secondary windows, or even in popup
windows.

This chapter demonstrates the techniques of working with buttons, menus,
accelerator keys, and graphic controls. These techniques can be combined
with each other and with text and graphic hot spots.

When designing your interface, remember to maintain a simple, clear,
consistent set of operations. The user should never have to hunt around for
the controls, or wonder what a particular control does.

This chapter uses techniques introduced in earlier chapters, and requires a
thorough familiarity with the routine use of Project Editor and Topic Editor.
The common operations are described in less detail than in previous chapters,
to place greater emphasis on the new material.



6.1 Howdoll ...

Create an Up {vfld137438953482}Button{vfld3800470531342336}?
Complexity: INTERMEDIATE

Problem

My application includes several logical levels of information—major topics
containing subtopics that contain minor topics. I need to create a button that
brings the user to the next higher logical level from any topic.

Technique
You create a button that causes the appropriate higher—level topic to be
displayed. This button is redefined as each topic is displayed so that it jumps
to the proper topic. All standard menus and buttons are retained.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and project file:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPG6 1, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6_1. Create these four
directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPG6 1 directory. Enter the name of your document file
as TEXT\CHAP6_1.RTF.

3. Choose Title Options from the Section menu to display the Title Options
dialog box. Enter contents in the Contents Topic field. Click on OK.

Next create the button:
4. Choose Config from the Section menu, and place the insertion point on
the blank line below the existing commands.

5. Click on the Paste Command button, select the
{vfld137438953483} CreateButton {vfld1477325272146509824}
command, and click on OK.

6. Click on the Edit Command button, and enter “btn_up' in the ButtonID
field, and ~&Up' in the Button Caption field. Be sure to include the
proper left and right single quotation marks (') around each entry. Click
on the down arrow alongside the Command field, then select the
Contents() command. The dialog box should look like Figure 6—1.

{ewc vwrht2, TsTextButton, "Figure
6i(,21"[Macro=JI("viewerht.mvb>SecWin', ‘fig6_1")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

7. Click on OK to return to the Config dialog box, which should look like
Figure 6-2. Click on OK to return to the main Project Editor window.



{ewc vwrht2, TsTextButton, "Figure
6i(, /22" [Macro=JI(' viewerht. mvb>SecWin', ‘figh 2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Now create the document file:

8.

10.

Use Project Editor to start Word and create your document, and create a
new topic with the context string contents. Be sure to delete the page
break that is created before your topic.

Use Topic Editor to define a Topic Entry command. Click on the Paste
Command button and select the

{vfld137438953483} DisableButton {v{ld-9223349496866406400}
command. Click on the Edit Command button, and enter ~btn_up' in the
ButtonID field. Be sure to include the proper left and right single
quotation marks. Click on OK twice to return to the document.

Insert a few blank lines, and create hot spots using the information in
Table 6—1. Indent the text to maintain the appearance shown in the table,
using tabs or spaces.

Table 6—1. Hot spots for How—To 6—1.

Hot Spot Text Context String
Designing a Viewer Application chap 2
How Should I Design the Application? sect 2 1
How to Present Information sect 2 1 a
Select Types of Pictures sect 2 1 b
Viewer’s Files sect 2 2
Required, Created by Author sect 2 2 a
Other Files sect 2 2°b
Creating A Simple Application chap 3
Start a New Project sect 3 1
Create directories sect 3 1 a
Create Project File sect 3 1b
Create a Contents Topic sect 3 2
Create the Document File sect 3 2 a
Create the Footnotes sect 32 b

11.
12.

Use Topic Editor to create a new topic with context string chap_2.

Create another Topic Entry command, and paste in the
{vfld137438953483 } ChangeButtonBinding {v{ld12232066859008} (or
{vfld137438953483} CBB {v{ld-9223349496866406400} ) command.
You can use either entry—the full or abbreviated names work the same.
Edit the command to set the ButtonID to ~btn_up' and the command to
“Contents()'. Click on OK. Move the insertion point down one line and
paste in the {vfld137438953483} EnableButton{vfld-
9223349496866406400} (or EB) command. Edit the command to set the
ButtonID to “btn_up'. Click on OK twice.



13. Enter the topic heading as follows:
Chapter 2: How is a Viewer Application Created?

14. Insert a few blank lines and copy the portion of the hot spots in the
contents that apply to Chapter 2 into this topic.

15. Create a new topic with context string sect_2_1. Create CBB and EB
Topic Entry commands similar to those in the previous topic. The CBB
command field should be “JumplD(qchPath, "chap_2")'. Note that the
inner pair of quotations must be double quotation marks.

16. Enter the topic heading as follows:
How Should | Design the Application?

17. Insert a few blank lines and copy the two hot spots for this section from
the previous topic.

18. Create a new topic with context string sect 2 1 a and CBB and EB
Topic Entry commands. The CBB Command field should be
“JumplD(qchPath, "sect_2_1")". Enter the topic heading:

How to Present Information

19. Insert a few blank lines and enter any desired text. Repeat step 18 for
section 2_1 a. Use the identical CBB command because these topics
have the same next higher topic.

20. Repeat steps 15 through 18 for section 2_2 with corresponding CBB
commands and field entries.

21. Repeat steps 11 through 19 for Chapter 3 with corresponding CBB
commands and field entries.

22. Your document should look like Figure 6-3.

{ewc vwrht2, TsTextButton, "Figure
6i(, 3" [Macro=JI("viewerht.mvb>SecWin', ‘fig6_3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

23. Save your document file, and compile and test as usual. Display various
levels of the application by using the contents lists, and see what topic is
displayed by the new button in each case. Note that the button is disabled
at the highest level.

How It Works
The new button is created when the application is loaded by a command in
the Config section of the project file. This command gives the button an
internal name (btn_up) that can be used by other commands to modify the
button, a caption (&Up) that allows the button to be selected through the
keyboard by pressing [ALT]-[U], and a command to be executed when the
button is selected (Contents()).

When the Contents topic is displayed, the topic entry command disables
the new button, because there is no higher level to display.



When any other topic is displayed, the topic entry commands perform two
tasks. The command associated with the button is replaced with a command
that displays the proper topic, and the button is enabled (in case you jump to
this topic straight from the Contents). The button always displays the higher
topic. In the main chapter topics (such as chap 3) you use the Contents()
command. In the major section topics (such as sect 3 1) you use a JumpID
command with the chapter topic’s context string. In the minor section topics
(such as sect 3 1 _a) you use a JumpID command with the major section’s
context string.

Comment

This technique of redefining the button’s operation in every topic is the
standard way to handle any part of the user interface that changes based on
what part of the application is displayed. You must redefine the operations in
every topic unless you limit the user’s ability to jump between topics.
Limiting the user requires removing the History, Back, Index, and Search
buttons and studying the possible paths through hot spots very carefully. If
you miss any possibilities, you guarantee that your users are surprised by the
unexpected topics that appear when they use this button.

The only alternative to continuously redefining the buttons is to include
the controls as pictures in a non—scrolling region within every topic, with
suitable definitions in each case. There isn’t much difference—you need a set
of controls for each topic either way. If the controls are included within the
topics, they display automatically.



6.2 Howdoll ...

Create a Configuration {vfld137438953482}Menu{vfld3800470531342336}?
Complexity: DIFFICULT

Problem

I want to let the user control some operations of the application, such as
whether or not to play sounds and to display VGA or SVGA versions of
pictures. The user should only be able to change these options while in the
Contents topic.

Technique
You create a new menu title with three items—one to control sounds, one to
select VGA pictures, and one to select SVGA pictures. The commands
executed by these menu items set checkmarks on the menu to show the active
options and set marks that can be tested throughout the application. Marks
are place markers that cannot be seen by the user, but can be tested and used
by Viewer commands. You disable the menu items outside the Contents
topic, and enable them within that topic.
This section uses complex conditional
({vfld137438953483} IfThen{v{ld71919613918576640}) commands. If you
are not familiar with these commands, you should review How—To 5.10.
You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP6 2, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6 2. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the pictures files for this How—To from the
VIEWERHT\HOWTOS\CHAP6\CHAP6 2\PICTURES directory on the
CD-ROM to the \VIEWERHT\CHAP6 2\PICTURES directory on your
hard drive. Copy the sound files from the SOUNDS subdirectory
similarly.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP6 2 directory. Enter the name of your document file
as TEXT\CHAP6_2.RTF.

Next create the menu title and items:

4. Choose Config from Project Editor’s Section menu to display the
Configuration Script dialog box, and move the insertion point to the first
blank line under the existing commands.

5. Click on the Paste Command button, select the
{vfld137438953483} RegisterRoutine {vfld-9223349496866406400}
command, and click on OK. Click on the Edit Command button and enter
“mmsystem.dll' as the DLLName,



“{vfld137438953483}sndPlaySound{vfld-
9223357193447800832}' as the FunctionName, and ~Su' as the
ParameterSpec. Click on OK.

6. Paste in the {vfld137438953483} InsertMenu{vfld-
9223349496866406400} command. Edit the command and enter
“mnu_config' as the MenulD, " Con&figuration' as the Menu Caption,
and 4 as the Menu Position.

7. Paste in the {vfld137438953483} AppendItem {vfld-
9223349496866406400} command. Edit the command and enter
“mnu_config' as the MenulD, “mnu_sounds' as the NewltemID, and
"So&unds' as the ItemCaption, and enter the following text in the
Command field (all as one line):

IfThenElse({vfld137438953483}IsMark{vfld12232066859008}
("sounds"),"{vfld137438953483}Uncheckltem{vfld12232066859008
}(mnu_sounds');
{vfld137438953483}DeleteMark{vfld12232066859008}
(“sounds")","{vfld137438953483}Checkltem{vfld12232066859008}
(*mnu_sounds');
{vfld137438953483}SaveMark{vfld280933810831360}( sounds')")

The completed dialog box should look like Figure 6—4.

{ewc vwrht2, TsTextButton, "Figure
6i(, /24" [Macro=JI(" viewerht. mvb>SecWin', "figb6 4")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

8. Paste in another Appendltem command. Enter “mnu_config' as the
MenulD, “mnu_VGA' as the NewltemID, " &VGA' as the ItemCaption,
and enter the following Command (all as one line):

IfThen(lsMark("SVGA"),"Uncheckltem(*mnu_SVGA');
Checkltem(*mnu_VGA');DeleteMark(* SVGA'); SaveMark( VGA')")

9. Paste in another AppendItem command. Enter “mnu_config' as the
MenulD, “mnu_SVGA' as the NewltemID, *&SVGA' as the
ItemCaption, and enter the following Command (all as one line):

IfThen(lsMark("VGA"),"Uncheckltem("mnu_VGA');
Checkltem(*mnu_SVGA');DeleteMark(*VGA'); SaveMark(*SVGA')")

10. Paste in a Checkltem command, and enter “mnu_SVGA' as the MenulD.

11. Paste in a SaveMark command, and enter * SVGA' as the MarkID. The
completed script should look like Figure 6-5.

{ewc vwrht2, TsTextButton, "Figure
6i; 25" [Macro=JI( viewerht. mvb>SecWin', 'figb 5')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

12. Save your project file.



Next create the document file:

13.

14.
15.

Use Project Editor to start Word and create your document. You don’t
have to create a topic here—the beginning of the file is automatically a
new topic, and this topic doesn’t need a context string.

Create a hot spot with text Play sounds, jumping to ctx_sounds.
Create a hot spot with text Show picture, jumping to ctx_picture.

Next create the topic to play sounds if the Configuration menu selection
permits:

16.
17.

18.

Create a new topic with context string ctx_sounds.

Choose Footnote from Word’s Insert menu. Choose the Custom Footnote

Mark radio button, and enter an exclamation point (!) as the custom
mark. Click on OK.

Word displays the Footnote window at the bottom of the screen. Enter
the following command immediately after the exclamation point:

IfThen(IsMark(" sounds'),"sndPlaySound(" sounds\chimes.wav',1)")

19.
20.

Click on the Close button at the top of the Footnote window.
Enter text:

This plays chimes if allowed. Click on the Go Back button to return.

Next create the topics to display pictures.

21.
22.

23.

Create a new topic with context string ctx_picture.

Choose Footnote from Word’s Insert menu. Choose the Custom Footnote
Mark radio button, and enter an exclamation point as the custom mark.
Click on OK.

Word displays the Footnote window at the bottom of the screen. Enter
the following command immediately after the exclamation point:

IfThen(IsMark(*VGA'),"JumpID(qchPath, “ctx VGA')")

24.
25.

26.

Click on the Close button at the top of the Footnote window.

Insert a couple of blank lines and insert a Picture (using ewX...)
command. Specify filename PICTURES\SVGA.BMP, and Caption This is
a Super VGA picture.

Insert a few more blank lines and enter text:

Click on the Go Back button to return.

27.
28.

29.

Create a new topic with context string ctx_VGA.

Insert a couple of blank lines and insert a Picture (using ewX...)
command. Specify filename PICTURES\VGA.BMP, and Caption This is
a VGA picture.

Insert a few more blank lines and enter the following text:

Click on the Go Back button to return.

30.

The completed document should look like Figure 6—6. Save your
document file, and compile and test as usual.



{ewc vwrht2, TsTextButton, "Figure
6i(,/26"[Macro=JI(" viewerht. mvb>SecWin', ‘figb 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

31. See how the menu checkmarks appear and disappear as you select items.
Set the new Sounds menu item on, and click on the Play sounds hot spot.
Go back and try this again with the option turned off.

32. Test the picture options similarly. Note that clicking on the Go Back
button while the VGA picture is displayed doesn’t work—the command
entered in step 23 is reexecuted and the VGA topic is redisplayed.

How It Works

In step 5 you add a command in the Config section of the project file that
creates the menu title with the internal name of mnu_config and a caption of
Con&figuration, located as the fifth title on the menu bar. The position values
start with zero for the first title.

The Sounds menu item contains a complex nested command. If there is a
mark named “sounds,” this menu item is unchecked and the mark is deleted.
If the mark does not exist, it is created and the menu item is checked. The
presence of that mark is tested in the ctx_sounds topic—the sndPlaySound
command is only executed if the sounds mark exists. Note that this item
defaults to off—no sounds play until the menu item is selected.

The VGA menu item checks for a mark named “SVGA.” If that mark
exists, the SVGA menu item is unchecked, the VGA item is checked, the
SVGA mark is deleted, and the VGA mark is created. The SVGA menu item
has the corresponding commands in reverse. The ctx_pictures topic tests for
the VGA mark, and jumps to the ctx VGA topic if the mark exists. If not, the
SVGA picture is displayed within the current topic. The Config script
includes commands to check the SVGA menu item and create the SVGA
mark.

Comment

An ewX command, used to display a picture or play sounds or movies,
cannot test for marks. The only way to use marks to control ewX commands
is by controlling which topics are displayed. As a result, all topics that
contain ewX commands that you want to control must be duplicated in the
document, just as the picture topics were duplicated in this How—To.
Commands that are executed in hot spots, buttons, menu items, or topic entry
commands can include conditional tests.

Note the multiple levels of quotation marks required to enter the
conditional commands in the menu item definitions. Each level of quotations
must alternate between single and double quotation marks. The entire
command must be enclosed in quotation marks because it is a parameter of
the Appendltem command. Because you used single quotations for that, you
had to use double quotations around the commands within the IfThenElse
command. The parameters within those commands then use single quotations



again.

You use the Appendltem command to define the menu items instead of the
Insertltem command because it’s slightly simpler. Appendltem adds an item
at the end of the menu, whereas Insertltem requires that you define the
specific position.



6.3 Howdoll ...

Customize the About... Window?
Complexity: EASY

Problem
I want to create my own About... window, to be displayed by an item under
the Help menu title.

Technique
You can add one line of
{vfld137438953482} copyright{vfld4573404880428859392} information to
the standard About... window, but cannot change the rest of it. You modify
the standard menu item to display a topic within your document file instead
of the standard window.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and project file, and create the menu item:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP6 3, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6 3. Create these four
directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP6_3 directory. Enter the name of your document file
as TEXT\CHAP6_3.RTF.

3. Choose Config from the Section menu to display the Configuration
Script dialog box, and position the insertion point on a blank line. Click
on the Paste Command button to display the Paste Command dialog box,
select the {vfld137438953483} Deleteltem {v{ld-9223349496866406400}
command, and click on OK. Click on the Edit Command button to
display the Edit Command dialog box, and use the pull-down list to
select ItemID mnu_about. Click on OK.

4. Position the insertion point at the next line in the Config script, and paste
in the {vfld137438953483} AppendItem {vfld-9223349496866406400}
command. Click on the Edit Command button to set the parameters.
Click on the down arrow alongside MenulD, and select mnu_help. Click
on the down arrow alongside NewltemID, and select mnu_about. Enter
"&About Chap6_3' for the ItemCaption. For the Command field select
PopupID from the pull-down list, then replace the TitleFile entry with
gchPath (without quotation marks), and replace Context>PopupName
with ~ctx_about'. Click on OK twice.

Next create the document file and the new About topic:

5. Use Project Editor to start Word and create your document. Enter the
following text: This is the Contents topic. This represents the entire
application.



6. Create a new topic with context string ctx_about. Enter a few lines of
text as follows, with each sentence on a separate line:

Multimedia Viewer How-To 6.3. Copyright (C) 1993 Stephen Pruitt.
This How-To prepared by (your name).

7. Insert a few blank lines and type this text:
[Click anywhere on the main window to return]

8. Save your document file, and compile and test as usual.

9. Choose About from the Help menu in your application. It should look
like Figure 6-7.

{ewc vwrht2, TsTextButton, "Figure
6i;27"[Macro=JI( viewerht. mvb>SecWin', 'figb 7')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

Steps 3 and 4 remove the standard menu item and replace it with a custom
one. The new item executes the PopupID command when selected—this
displays a popup window just as in a hot spot.

Comment

Viewer does not allow the command in a standard menu item to be changed
with the {vfld137438953483}ChangeltemBinding {vfld-
8970326573957775360} command—this can only be used on author—defined
menu items. Therefore you have to delete and replace the item. This also
allows you to change the caption.

The popup window does not look as good as the standard About window,
and you can’t use an OK button to close it. There isn’t any command a button
could execute to close the window. A normal—appearing About window could
be produced by writing a DLL or Visual Basic program that displays the
window in the proper location and closes it when the OK button is clicked.
You would execute the appropriate command in the menu item to call your
DLL or VB program. The location of the window in such programs is usually
determined by the location of the mouse pointer. This can cause strange
results if the keyboard is used to select the menu item!

The TSTools Viewer extension, included on the CD enclosed with this
book, has a function that can be used to create a professional About box. This
is described further in Appendix B. This function is used in the VIEWERHT
application that is on the same CD disk.



6.4 Howdoll ...

Add {vfld137438953482}Accelerator Keys{vfld3800470531342336}7?
Complexity: EASY

Problem

I want to allow users to perform several different operations through special
key combinations. These include displaying a glossary topic in a secondary
window and executing a separate Windows program.

Technique
You use the Viewer
{vfld137438953483} AddAccelerator {vfld280933810831360} command to
define the key combinations and their associated actions.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP6 4, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6 4. Create these four
directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP6_4 directory. Enter the name of your document file
as TEXT\CHAPG6_4.RTF.

Next define a secondary window and the accelerator keys:

3. Choose Window Definitions from the Section menu. Click on the New
button, which creates secondary window Winl. Click on the Properties
button to display the Window Properties dialog box, and change the
Window Caption field to Glossary. Leave all other fields at their default
values. Use the System Control box to close this dialog box. Click OK in
the Window Definitions dialog box to return to the main Project Editor
window.

4. Choose Config from the Section menu. Place the insertion point on the
first blank line after the existing script commands, and click on the Paste
Command button. Select the AddAccelerator command, and click on OK.

5. Click on the Edit Command button to display the Edit Command dialog
box. Set the Key field by selecting the 0x31 — 1 key entry from the pull—-
down list. Set the Shift field to 2 — Ctrl by using the pull-down list for
that field. Set the Command field to JumpID similarly. Edit the JumpID
command parameters so that the command is as shown below (Note the
placement of single and double quotations):

“JumpID("CHAP6_4.MVB>Winl", "glossary")'
Click on OK.

6. Repeat steps 5 and 6 to paste in another AddAccelerator command,
selecting keys “2 — Ctrl” and “0x32 — 2.” Select the ExecProgram
command. Edit the CommandLine to read "sol.exe", and set the



ProgramState to 0. Click on OK. The resulting script should look like
Figure 6-8.

{ewc vwrht2, TsTextButton, "Figure
61, /28" [Macro=JI(' viewerht. mvb>SecWin', ‘fig6 8")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

7. Use Project Editor to start Word and create your document. Enter a line
of text: This is the Contents topic. This topic is used, for this How—
To, to represent a complete normal application.

8. Create a new topic with the context string
{v{1d2305865549202063370}glossary{vfld-
9079242005371944960}. Enter a series of lines of text—each
beginning with a term from this book, followed by a short definition or
description. For example, terms from this chapter could include Button
bar, Menu title, Menu item, Accelerator key, AddAccelerator,
InsertMenu, Appendltem, ExecProgram, ChangeButtonBinding,
Checkltem, and UncheckItem. The entries should be listed in alphabetic
order.

9. Save your document file, and compile and test as usual.

10. Press [CTRL]—-[1]—a secondary window containing your glossary should
appear. Press [CTRL]-[2]—the Windows Solitaire game should start. The
results should look like Figure 6-9.

{ewc vwrht2, TsTextButton, "Figure
6i(,/29"[Macro=JI("viewerht.mvb>SecWin', ‘fig6_9")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works
The [CTRL]—[1] accelerator key defined in steps 4 and 5 executes a common
JumpID command that specifies a secondary window. When that key
combination is pressed the JumpID command is executed, creating a
secondary window containing the glossary topic.

The [CTRL]-[2] accelerator key defined in step 6 executes an
ExecProgram command that starts the Solitaire program. This is very similar
to the examples in How—To 5.11.

Comment
Accelerator keys must be easy to remember unless there is a visible list of the
keys. They should not include the [ALT]-letter shortcuts used to select menus
or buttons.



6.5 Howdoll ...

Create a Graphic Interface in the Master Pane?
Complexity: INTERMEDIATE

Problem
I want to use pictures to represent the Contents, Previous, Next, and Exit
operations. I want to put them inside my master pane.

Technique
You create a {vfld2305858952132296714 } non—scrolling region{vfld-
9079242005371944960} (NSR) in the master pane. The pictures are placed in
a table within the NSR.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP6 5, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6_5. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from
directory VIEWERHT\HOWTOS\CHAP6\CHAP6_S5\PICTURES on the
CD-ROM to the VIEWERHT\CHAP6 5\PICTURES subdirectory on
your hard disk.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP6_5 directory. Enter the name of your document file
as TEXT\CHAP6_5.RTF.

4. Choose Title Options from the Section menu, and enter contents in the
Contents Topic field. Click on OK.

Next create the NSR and controls:

5. Use Project Editor to start Word and create your document, and create a
new topic with the context string contents. Be sure to delete the page
break that is created before your topic.

6. Choose Paragraph from Word’s Format menu, and check the Keep With
Next check box. Click on OK.

7. Choose Insert Table from the Table menu, and create a table with four
columns, one row, and a 1.6-inch column width.

8. Choose Column Width from the Table menu, and set Space Between
Columns to 0.

9. Place the insertion point in the first table cell, and use Topic Editor to
define a Picture (using ewX) command.

10. Click on the Options button, and select the desired file name—
PICTURES\CONTENTS.BMP. Check the Store Picture in Baggage
check box.

11. Click on the Paste Command button, and select the Contents() command.



This command has no options, so you don’t need to edit it. Click on OK
twice to return to Word.

12. Repeat steps 9 through 11, inserting picture files PREVIOUS, NEXT,
and EXIT with corresponding commands Prev(), Next(), and Exit().

13. Insert a blank line, then choose Paragraph from Word’s Format menu and
uncheck the Keep With Next check box.

Now create the topics to use for testing:
14. Enter a line of text: This is the Contents topic.

15. Enter 30 lines of text reading This is line 1, etc. The document should
look like Figure 6-10.

{ewc vwrht2, TsTextButton, "Figure
6i;,210"[Macro=JI(" viewerht. mvb>SecWin', fig6_10")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

16. Insert a few blank lines, and insert a text hot spot with the text Go to
another topic and jumping to context string next.

17. Create a new topic with context string next. Insert the text This is a
separate topic.

18. Save your document, and compile and test as usual. The contents topic
should look like Figure 6—-11. Scroll through the topic text.

{ewc vwrht2, TsTextButton, "Figure
6i;'211"[Macro=JI(" viewerht.mvb>SecWin', "fig6 11")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

19. See what the next topic looks like by clicking on the hot spot, then click
on the Exit picture to end the program.

How It Works
You created the {vfld137438953482}button bar{vfld-35184913254711296}
using the techniques demonstrated in How—To 4.2—a table with ewc
embedded window commands. Each command is set up to execute an
appropriate Viewer command if the user clicks on the picture.

The button bar is placed into a {vfld137438953482}non—
scrolling region{vfld8070312552128577536} by formatting it as a Keep
With Next paragraph. This defines an NSR, causing the button bar to remain
in place as you scroll through the text for that topic.

The Previous and Next pictures don’t do anything because you didn’t
define a Browse sequence. You include that in the next How—To.

Comment
The thin border separating the NSR from the body of the topic is part of the
default definition of the NSR. You could have eliminated the border, changed



the NSR background color, or positioned the NSR at the bottom of the master
pane through Window Definitions in Project Editor’s Section menu.

The wide spacing between the buttons is caused by the table that was used.
How—To 4.2 demonstrates the effect of various techniques for creating button
bars.

The graphic button bar doesn’t exist in the second topic because you didn’t
define one there. This type of control must be included in every topic to
maintain a consistent appearance.

In a real application, such a graphic bar has to change appearance to reflect
the available commands. Grayed—out versions of the Previous and Next
pictures would be used within topics that are not in a Browse sequence, or are
at the start or end of the sequence. This is where the table structure is useful,
because it helps to assure that the pictures retain the same position between
topics, and do not appear to jump as new topics are displayed.



6.6 Howdoll ...

Create a Graphic Interface in a
{vfld137438953482}Regular Pane{vfld3800470531342336}?

Complexity: INTERMEDIATE

Problem
I liked the results of the last How—To, but now I want to put my picture
controls in a regular pane alongside the master pane.

Technique
You create a regular pane on one side of the master pane, and display the
controls in a vertical table in that pane. You define a Browse sequence this
time so all the controls work.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP6_6, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6_6. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from
directory VIEWERHT\HOWTOS\CHAP6\CHAP6_6\PICTURES on the
CD-ROM to the VIEWERHT\CHAP6 6\PICTURES subdirectory on
your hard disk.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP6_6 directory. Enter the name of your document file
as TEXT\CHAP6_6.RTF.

4. Choose Title Options from the Section menu, and enter contents in the
Contents Topic field.

Next define the regular pane:

5. Choose Window Definitions from the Section menu, and click on the
Properties button to display the Window Properties dialog box. Click on
the Master Pane button to display the Master Pane Properties dialog box.

6. Clear the Auto—position check box, then click on the Preview On button.

7. Drag the borders of the Master Pane to expose an area on the right.
Double—click on the System Control box to close this window. Close the
Window Properties dialog box the same way.

8. In the Window Definitions dialog box, click on the Panes file folder tab
then click on the New button. Click on the Properties button to display
the Pane Properties dialog box.

9. Change the Pane Name field to Controls.

10. Change the Dismiss When field to Title is Closed, and the Border field to
(none).

11. Click on the Windows button to display the Pane Associations dialog



box, then check the Show in Window check box.

12. Click on the Preview button to display the window layout, and then drag
and stretch the Controls pane to cover the area to the right of the master
pane, as shown in Figure 6—12.

{ewc vwrht2, TsTextButton, "Figure
6i;212"[Macro=JI(" viewerht. mvb>SecWin', fig6_12")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

13. Use the System Control box to close the Window Properties dialog box,
then click on OK in the Window Definitions dialog box.

Next create a topic group and cause the Controls pane to be displayed

immediately:

14. Choose Groups from the Section menu to display the Groups dialog box,
and click on the New button.

15. Clear the Searchable check box. Leave the name as the default Groupl.
Click on OK.

16. Choose Config from the Section menu to display the Config dialog box.

17. Position the insertion point on the blank line below the last existing
command, and click on the Paste Command button. Select the PanelD
command, and click on OK.

18. Click on the Edit Command button. Enter
{vfld2305878743341596682} qchPath{vfld-
92233494968664064007} in the TitleFile field without quotation
marks, and enter a single space in the WindowName field without
quotation marks. Enter *ctx_control' in the Context field, and
“Controls' in the PaneName field with single quotation marks for both
fields. Enter O in the PrintTabCopyOrder field, and click on OK twice to
return to the main Project Editor window.

Next create some topics for testing:

19. Use Project Editor to start Word and create your document, and create a
new topic with context string contents. Be sure to delete the page break
that is created before your topic.

20. Use Topic Editor to define a Topic Group footnote for Groupl and
Sequence Number 010.
21. Enter the following text:

This is the Contents topic. Use the Next button to display the next
topic.

22. Insert a blank line and create a new topic with context string topic2.
Define a Topic Group footnote for Groupl and sequence 020. Enter the
following text:

This is the second topic. Use the Previous or Contents buttons to
display the other topic.



Next create the topic containing the controls:
23. Insert a blank line and create a new topic with context string
ctx_control.

24. Choose Insert Table from the Table menu, and create a table with one
column, four rows, and a 2—inch column width.

25. Select all four rows of the table, then choose Row Height from the Table
menu, and set the height to Exactly 12 lines.

26. Position the insertion point in the first table cell, and use Topic Editor to
insert a Picture (Using ewX) command. Select the PICTURES\
CONTENTS.BMP file, and check the Store Picture in Baggage check
box.

27. Click on the Paste Command button, and select the
{vf1d137438953483} Contents() {vfld801785328040935424} command.
This command doesn’t use any parameters, so you don’t need to edit it.
Click on OK twice to return to the document.

28. Repeat steps 26 and 27, inserting picture files PREVIOUS, NEXT, and
EXIT with corresponding commands {vfld137438953483}Prev()
{vfld12232066859008}, {vfld137438953483} Next()
{vfld12232066859008}, and {vfld137438953483} Exit()
{vfld1044979707918942208}.

29. Save your document file, and compile and test as usual. You get an error
message Table formatting too complex that can be ignored. (It is
explained under the Comment section below.) The window should look
like Figure 6—13.

{ewc vwrht2, TsTextButton, "Figure
6i;213"[Macro=JI(" viewerht. mvb>SecWin', ‘fig6_13")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

30. Use the new controls to switch between the two topics, and to exit
Viewer.

How It Works
Just as in How—To 6.5, you created the button bar using the techniques
demonstrated in How—To 4.2—a table with ewc commands. Each command
is set up to execute an appropriate Viewer command if the user clicks on the
picture.

The button bar is displayed in a regular pane through the PanelD
command included in the Config script. The commands in this script are
executed when the application is loaded.

Comment

The {vfld2305858952132296716} Tuble

formatting too complex{vfld2305857852620668928} message results from
setting the {vfld137438953484}cell height{vfld4211991010332377088}.
Viewer does not support this command. Fortunately, as you saw, Viewer sets



the correct height for the table cells automatically.

The proper size and position of the pane containing the controls is
determined by trial and error, or from knowing the size of the pictures.

Regular panes are automatically resized to fit the topic being displayed. As
a result, picture bars such as in this How—To must be carefully designed, and
the panes properly positioned, for the best appearance. This resizing is also
part of the reason why the right and bottom portions of the pane have a
different color. The background color of the window is showing through in
these areas because it is not covered by a pane. The window
{vf1d137438953484}background color{vfld11132555231232} does not
default to using the default color—that option must be set. As you see in this
demonstration, it is important to make sure the
{vfld137438953482}background colors{v{ld280933810831360} of the
window and all panes are consistent, or at least compatible, when using
panes. This is not an issue if you don’t use panes, because the master pane
covers the entire window.

The {vfld137438953484}border{v{ld-9007337234860343296} around the
controls pane is eliminated because a border around a resized pane (when the
topic is smaller than the space provided) is distracting rather than helpful.



6.7 Howdoll ...

Create a Graphic Interface in a
{vfld137438953482}Floating Window{vfld3800470531342336}?

Complexity: INTERMEDIATE

Problem
How—To 6.6 looked really good, but now I want to try the same thing with
the controls in a floating window.

Technique
You use the same techniques of creating a table with ewX commands as in
the two previous sections, but this time display the topic containing the
controls in a secondary window.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP6_7, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6 7. You create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from
directory VIEWERHT\HOWTOS\CHAP6\CHAP6 7\PICTURES on the
CD-ROM to the VIEWERHT\CHAP6 7\PICTURES subdirectory on
your hard disk.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP6_7 directory. Enter the name of your document file
as TEXT\CHAP6_7.RTF.

Next define the secondary window and a topic group:
4. Choose Title Options from the Section menu, and enter contents in the
Contents Topic field.

5. Choose
{v{1d137438953482} Window Definitions {vfld1477325272146509824}
from the Section menu. Click on the New button to create a new window,
then the Properties button to display the Window Properties dialog box.

6. Change the Window Name to SecWin, and the Window Caption to
Secondary Window. Change the Stay on Top field to Yes. Change the
Minimize with Main field to Yes, change Width to 1024, and change
Left to 0. Use the System Control box to close the Window Properties
dialog box, and click on OK in the Window Definitions dialog box.

7. Choose Groups from the Section menu to display the Groups dialog box,
and click on the New button.

8. Clear the Searchable check box. Leave the name as the default Groupl.
Click on OK.



Next create the topics for testing:

9. Use Project Editor to start Word and create your document, and create a
new topic with context string contents. Be sure to delete the page break
that is created before your topic.

10. Use Topic Editor to define a Topic Group footnote for Groupl and
Sequence Number 010.

11. Use Topic Editor to define a Topic Entry Command (! footnote). Click on
the Paste Command button, and select the JumpID command.

12. Click on the Edit Command button, and change the TitleFile field to
“chap6_7.mvb'. Change the WindowName field to "SecWin' by using
the pull-down list, and change the Context field to ~controls'. Be sure to
include the proper left and right single quotation marks in each field.
Click on OK twice to return to the document.

13. Enter the following text:

This is the Contents topic. Use the Next button to display the next
topic.

14. Insert a blank line and create a new topic with context string topic2.

Define a Topic Group footnote for Groupl and sequence 020. Enter the
following text:

This is the second topic. Use the Previous or Contents buttons to
display the other topic.

Next create the topic containing the controls:

15.
16.

17.

18.

19.

20.

21.

Insert a blank line and create a new topic with context string controls.

Choose Insert Table from the Table menu, and create a table with four
columns, one row, and a 1.6—inch column width.

Select the entire row of the table, then choose Column Width from the
Table menu, and set Space Between Columns to 0. Click on OK.

Position the insertion point in the first table cell, and use Topic Editor to
insert a Picture (Using ewX) command. Select the PICTURES\
CONTENTS.BMP file, and check the Store Picture in Baggage check
box.

Click on the Paste Command button, and select the JumpID() command.
Click on the Edit Command button, and change the TitleFile to
“chap6_7.mvb', WindowName to “main’', and Context to ~contents'.
Click on OK twice to return to the document.

Repeat steps 18 and 19, inserting picture files PREVIOUS, NEXT, and
EXIT with corresponding commands Prev(), Next(), and Exit(). These
commands do not need to be edited.

Save your document file, and compile and test as usual. The window
should look like Figure 6—-14.

{ewc vwrht2, TsTextButton, "Figure
6i;'214"[Macro=JI(" viewerht.mvb>SecWin', "fig6 14')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



22. Try to use the new controls to switch between the two topics. Switch to
the second topic by using the standard Browse >> button, and return by
using the new Contents picture control. Try minimizing and restoring the
main window. You should find that the new Previous and Next controls
don’t work. Exit by clicking on the new exit picture.

How It Works

The JumplID Topic Entry command in the contents topic, which you created
in steps 11 and 12, creates a secondary window that was previously defined
in Project Editor, and displays the topic with context string controls. You
could just as easily have inserted this command into the project file’s Config
script as you did in How—To 6.6. However, it is generally a good idea to
avoid adding commands to the Config script when secondary windows are
used, as these commands are executed both when the file is loaded, and each
time a secondary window is displayed. Re—executing some commands is
harmless, but others could cause unexpected topics to be displayed or other
problems.

A different command is associated with the Contents picture—JumpID
instead of {vfld137438953483}Contents(){vfld13331578486784}—Dbecause
Viewer ignores a {vfld137438953484} Contents(){vfld13331578486784}
command executed in a secondary window. The same thing is true of the
{vfld137438953484} Prev() {vfld13331578486784} and
{vfld137438953484} Next(){vfld-9151314983982727168} commands, but
there aren’t any substitute commands that would work with any topic and
group structure. This is why the Previous and Next controls don’t work. The
Exit() command does work in a secondary window.

Comment

A floating window interface can be created with some programming in either
C or Visual Basic. The programming requires issuing appropriate standard
commands to Viewer through a program interface when the user clicks on a
picture, and using the Viewer extensions capability to follow when the
Viewer window is minimized, maximized, or exited. The VBX custom
control included on the enclosed CD-ROM is required to write this program
in Visual Basic. The design of program control of a Viewer application is
demonstrated in Chapter 10.

The wide spacing between the buttons is caused by the table that was used.
How-To 4.2 demonstrates the effect of various techniques for creating button
bars.

You could use the JI command in place of the JumpID command.
Abbreviated command names work exactly the same as full names.



6.8 Howdoll ...

Create a Graphic Navigation Bar?
Complexity: DIFFICULT

Problem

I want to create a graphic control bar that lets the user view a selected section
of the application. The graphics must reflect which section the user is in at all
times. I don’t want to keep the standard button bar.

Technique
You create a regular pane above the master pane, and display the controls in a
table in that pane. Different topics, using different pictures, are displayed
based on the current section.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP6_8, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6_8. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from
directory VIEWERHT\HOWTOS\CHAP6\CHAP6_8\PICTURES on the
CD-ROM to the VIEWERHT\CHAP6_ S8\PICTURES subdirectory on
your hard disk.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP6_8 directory. Enter the name of your document file
as TEXT\CHAP6_8.RTF.

4. Choose Title Options from the Section menu, and enter contents in the
Contents Topic field.

Next define the pane:

5. Choose Window Definitions from the Section menu, and click on the
Properties button to display the Window Properties dialog box. Click on
the Master Pane button to display the Master Pane Properties dialog box.

6. Clear the Auto—position check box, then click on the Preview On button.

7. Drag the borders of the master pane to expose an area above the pane.
Double—click on the System Control box to close this window. Close the
Window Properties dialog box the same way.

8. In the Window Definitions dialog box, click on the Panes file folder tab,
then click on the New button. Click on the Properties button to display
the Pane Properties dialog box.

9. Change the Pane Name field to Controls.

10. Change the Dismiss When field to Title is Closed, and the Border field to
(none).

11. Click on the Windows button to display the Pane Associations dialog



12.

13.

box, then check the Show in Window check box.

Click on the Preview button to display the window layout, and then drag
and stretch the Controls pane to cover the area above the master pane, as
shown in Figure 6-15.

{ewc vwrht2, TsTextButton, "Figure
6i;215"[Macro=JI(" viewerht. mvb>SecWin', fig6_15")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Use the System Control box to close the preview window and the
Window Properties dialog box, then click on OK in the Window
Definitions dialog box.

Next create three topic groups with entry scripts:

14.

15.
16.

17.

18.

19.

Choose Groups in the Section menu to display the Groups dialog box,
and click on the New button.

Clear the Searchable check box. Leave the name as the default Groupl.

Click on the Entry Script button, then click on the Paste Command
button, and select the
{vfld137438953483} PanelD {v{ld1477325272146509824} command.

Click on the Edit Command button. Enter gchPath in the TitleFile field
without quotation marks, and enter a single space in the WindowName
field without quotation marks. Enter ~control_1' in the Context field,
and "~ Controls' in the PaneName field with single quotation marks for
both fields. Enter O in the PrintTabCopyOrder field, and click on OK
twice.

Repeat steps 14 through 17 to create Group2 and Group3. Use context
strings ~control_2'and "“control_3'. Note that a bug in Project Editor
sometimes causes problems when defining Entry or Exit Scripts. This
appears as two occurrences of each group, with no scripts. It is visible
after exiting the Groups dialog box and reselecting that menu item. If this
happens, delete the first occurrence of each group and redefine the Entry
Scripts.

Choose Config from the Section menu entry. Remove the Std20Buttons()

script entry by selecting that line and pressing [DEL]. Click on OK. Save
the project file by choosing Save from Project Editor’s File menu.

Next prepare the document. First create the topics for testing:

20.

21.

22.

Use Project Editor to start Word and create your document, and create a
new topic with context string contents. Be sure to delete the page break
that is created before your topic.

Use Topic Editor to define a Topic Entry command. Click on the Paste
Command button, and select the PaneID command. Click on OK.

Click on the Edit Command button. Enter qchPath in the TitleFile field
without quotation marks, and enter a single space in the WindowName
field without quotation marks. Enter ~control_0' in the Context field,
and " Controls' in the PaneName field with single quotation marks for



both fields. Enter O in the PrintTabCopyOrder field, and click on OK
twice to return to the document.

23. Enter text:
This is the Contents topic. Please click on the desired section.

24. Create a new topic with context string Sect_1A. Define a Topic Group
footnote for Groupl and Sequence Number 010.

25. Enter text:
This is the first topic in section 1.

26. Repeat steps 24 and 25 twice, creating topics with context strings
Sect 1B and Sect_1C, Sequence Numbers 020 and 030, and
appropriate text.

27. Repeat steps 24 to 26 twice, creating sections 2 and 3. Use appropriate
group and context string names and text.

Next create the topics containing the picture controls:
28. Create a new topic with context string control_0.

29. Choose Insert Table from Word’s Table menu, and create a table with one
row and three columns, and a column width of 1.5 inches.

30. Choose Column Width from the Table menu, and set the Space Between
Columns to 0.

31. Position the insertion point in the first table cell, and use Topic Editor to
define a Picture (Using ewX) command. Click on the Options button.

32. Select the file PICTURES\FIRST.BMP, and check the Store Picture in
Baggage check box. Click on the Paste Command button, and select the
JumpID command. Click on the Edit Command button, and change the
TitleFile field to gchPath, WindowName to one space, and Context to
“sect_1la'. Click on OK until you are back in the document.

33. Repeat steps 31 and 32 with the two remaining cells. Use files
SECOND.BMP and THIRD.BMP, and jump to context strings sect 2a
and sect_3a.

34. Repeat steps 28 through 33. The topic should have context string
control_1. The first table cell should display file FIRSTB.BMP, and not
have any associated command. The other two cells should be identical to
those in the control 0 topic.

35. Repeat steps 28 through 33. The topic should have context string
control_2. The second table cell should display file SECONDB.BMP,
and not have any associated command. The other two cells should be
identical to those in the control 0 topic.

36. Repeat steps 28 through 33. The topic should have context string
control_3. The third table cell should display file THIRDB.BMP, and
not have any associated command. The other two cells should be
identical to those in the control 0 topic.

37. Save the document, and compile and test the application as usual. The
results should look like Figure 6-16.



{ewc vwrht2, TsTextButton, "Figure
6i;'216"[Macro=JI(" viewerht.mvb>SecWin', "fig6 16')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

Each topic group is defined with an entry script containing a PanelD
command. This command displays the picture controls appropriate to that
group of topics in the regular pane. You could also have defined exit scripts,
but none were needed in this How—To.

You remove the {v{ld137438953483}Std20Buttons(){vfld-
9007337234860343296} command to eliminate the standard button bar.
Unfortunately, this eliminates the browse buttons and you didn’t include your
own in the graphic controls. As a result, you can get to the first topic in each
group, but not to the others! You also can’t get back to the Contents topic, or
retrace your steps through the History function. This shows the importance of
planning before you replace any of the standard menus or buttons.

You defined a topic—entry script in the Contents topic that displays the
initial picture controls. This can be done through the Config section of the
project file with the same effect.

The sets of picture controls are nearly identical. Tables are used to assure
that each picture is in the same position in each topic, to avoid the appearance
of pictures jumping around as the user changes topics. A grayed—out picture
is substituted in each case for the current topic group, to indicate that this is
the current selection. No command is associated with those pictures because
you are already in that topic group. The usual command could have been left
in place, to provide for returning to the beginning of the group.

Comment

Did you notice how long it took to display the picture controls when the file
was loaded? The use of regular panes displaying different topics results in
significant added overhead in Viewer. This would be even slower if the file
being viewed were on a CD-ROM disk—their slower operation would take
more time to retrieve the additional topic. This is less apparent in the later
topics because the previous appearance is consistent. The appearance of that
pane initially is jarring because it shows the Program Manager or other
previous underlying material.

When you define PanelD, JumplID, or similar commands and want to
display a topic from the current file in the main window, you can use
{vfld137438953482} qchPath {v{ld-9007199795906871296} for the Title File
and a single space for the Window Name. The qchPath entry is a special
Viewer—defined variable that contains the path and file name of the active
Viewer MVB file. This variable, with a blank Window name, describes the
default case of “main window in the current file.” The qchPath variable
cannot be used with a nonblank window name because of the command
syntax. In that case the actual file name, such as CHAP6_8.MVB, must be
hard—coded in the command.

The proper size and position of the pane containing the controls is
determined by trial and error, or from knowing the size of the pictures.



Regular panes are automatically resized to fit the topic being displayed. As
a result, picture bars such as in this How—To must be carefully designed, and
the panes must be properly positioned, for the best appearance. This resizing
is also part of the reason why the right and bottom portions of the pane have
different colors. The background color of the window is showing through in
these areas because it is not covered by a pane. The window background
color does not default to using the default color—that option must be set. As
you see in this demonstration, it is important to make sure the background
colors of the window and all panes are consistent, or at least compatible,
when using panes. This is not an issue if you don’t use panes, because the
master pane covers the entire window.

The border around the controls pane is eliminated because a border around
a resized pane (when the topic is smaller than the space provided) is
distracting rather than helpful.

A value of 0 for PrintTabCopyOrder prevents the topic from being printed
or copied.



6.9 Howdoll ...

Browse Within a
{vfld137438953482}Secondary Window{vfld3800470531342336}?

Complexity: INTERMEDIATE

Problem

I’m going to use a secondary window to display a series of topics, just as
though it is the main window. How can I give my users a Browse function
that works within the secondary window?

Technique
You can’t create buttons within a secondary window, so use hot spot pictures
again. Put these pictures in a non—scrolling region within each topic, and
create pictures for the Contents and Exit functions.

Just for effect, reduce the main window to an icon right away, and do
everything in the secondary window.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP6 9, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, MOVIES—under CHAP6_9. Create these four
directories for all projects, even if some are not needed.

2. Use the File Manager to copy the picture files for this How—To from
directory VIEWERHT\HOWTOS\CHAP6\CHAP6_9\PICTURES on the
CD-ROM to the VIEWERHT\CHAP6 9\PICTURES subdirectory on
your hard disk.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP6_9 directory. Enter the name of your document file
as TEXT\CHAP6_9.RTF.

Next define the secondary window:

4. Choose Window Definitions from the Section menu, and click on the
New button to define a new window.

5. Click on the Properties button to display the Window Properties dialog
box. Change Window Name to SecWin, and Window Caption to How-
To 6.9. Be sure to leave the Minimize with Main field set to No. Set
Height and Width to 700. Use the System Control box to close this
dialog box. Click on OK in the Window Definitions dialog box to return
to the main Project Editor window.

6. Choose Title Options from the Section menu, and enter contents as the
Contents Topic. Click on OK.

7. Save the updated project file.

Next create the document file, and the only topic that is displayed in the main



window:

8.

10.

11.

12.

13.

14.

Use Project Editor to start Word and create your document, and create a
new topic with context string contents. Be sure to delete the page break
that is created before your topic.

Use Topic Editor to define a Topic Entry command script. Click on the
Paste Command button, select the JumpID command, and click on OK.
Click on the Edit Command button, and change TitleFile to
"CHAP6_9.MVB', WindowName to ~SecWin', and Context to
“sec_contents'. Be sure to use the proper left and right single quotation
marks around each entry. Click on OK.

Move the insertion point to the next line in the command script, then
click on the Paste Command button again. Select the PositionTopic
command, then click on OK.

Click on the Edit Command button, and change WindowName to
"main', X and Y to 0, Width and Height to 100, UnitFlag to 0, and
WindowState to 2. Click on OK.

Move the insertion point to the next line in the command script, then
click on the Paste Command button again. Select the FocusWindow
command, then click on OK.

Click on the Edit Command button, and change the WindowName to
“SecWin' by using the pull-down list. Click on OK twice to return to the
document.

Enter the following text:

This is the Contents topic of the main window.

Now create the topics that display in the secondary window.

15.
16.

17.

18.

19.

20.

21.

22.

Create a new topic with context string sec_contents.

Choose Paragraph from Word’s Format menu, and check the Keep With
Next option. Click on OK.

Choose Insert Table from the Table menu, and create a table with one
row and four columns, with a 1.5—inch column width.

Position the insertion point in the first table cell, and use Topic Editor to
define a Picture (Using ewX) command. Select file PICTURES\
CONTENTS.BMP, and check the Store Picture in Baggage check box.
Click on the Paste Command button, select the JumpID command, and
click on OK.

Click on the Edit Command button, and change TitleFile to
“chap6_9.mvb', WindowName to ~ SecWin', and Context to
“sec_contents'. Click on OK twice to return to the document.

Repeat steps 18 through 20 for the remaining cells. Use files
PREVB.BMP and NEXTB.BMP in the second and third cells with no
commands. Use EXIT.BMP in the last cell with the Exit() command.
This command has no parameters and so does not need to be edited.

Insert one blank line and turn off the Keep with Next formatting. Enter
text:

This is the Contents topic of the secondary window.



23. Insert a few blank lines, and enter the text Jump to next topic. Select
that text, and invoke Topic Editor to create a text hot spot.

24. Select the Jump to element, and enter topic_1 as the Context String, and
SecWin as the Window. Leave the MVB Filename blank. Click on OK
to return to the document.

25. Create a new topic with context string topic_1. Repeat steps 16 through
22, except use file NEXT.BMP in the third cell, with a JumpID command
specifying TitleFile “chap6_9.mvb', WindowName ~SecWin', and
Context “topic_2'. Use the text This is the first topic.

26. Create a new topic with context string topic_2. Repeat step 25, except
the second cell must use file PREV.BMP and a JumpID command
specifying TitleFile' chap6_9.mvb', WindowName ~SecWin', and
Context “topic_1'. Also, the JumpID command in the third cell must
reference context string topic_3. Use the text This is the second topic.

27. Create a new topic with context string topic_3, like the previous topic.
The command in the second cell must reference context string topic_2.
The third cell must use file NEXTB.BMP and no command. Use the text
This is the third (and last) topic.

28. Save your document file, and compile and test as usual. The results
should look like Figure 6-17.

{ewc vwrht2, TsTextButton, "Figure
6i;217"[Macro=JI(" viewerht.mvb>SecWin', ‘fig6_17")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The secondary window is defined through Project Editor in the usual way.
The most important point in this definition is leaving the Minimize With
Main option set to No. This is changed to Yes for secondary windows that
operate with the main window.

The MVB file’s Contents topic performs only one function—executing a
topic—entry command script that displays the secondary window and
minimizes the main window. These commands cannot be placed in the
Config section of the project file because that script is re—executed when a
secondary window is displayed. This would cause an
{vfld137438953484 }infinite loop {vfld12232066859008} of executing the
same commands. The first command is a JumplID that specifies the secondary
window. This creates the window and displays the initial topic in it. The
second command is a
{vfld137438953483} PositionTopic{v{ld12232066859008} that is executed
to minimize the main window. This command requires entering the size and
position of the window. The third command is
{vfld137438953483 } FocusWindow {vfld3348425781784084480}, which
makes the secondary window the active window.

The pictures are placed within the topics, rather than defining them in
separate topics displayed in a regular pane, because the pictures and



commands must be changed for every topic. By including them within the
topics the proper pictures and controls are always displayed automatically.
This eliminates the need to execute a command to display the pictures
separately, and avoids the time that would take.

The appropriate pictures are replaced with grayed versions to reflect the
beginning or end of a browse sequence, just as the standard buttons are
grayed out in the main window. There is no way to detect this automatically
—the desired pictures must be defined in each topic. The pictures used for
the Contents and Exit functions remain the same in all topics, as they are
never inactive.

The commands associated with the browse pictures also change with each
topic. The Previous picture does not have a command when the first topic in
the sequence is displayed, and the same is true of the Next picture in the last
topic in the sequence. In all other cases, the pictures execute JumpID
commands that specify the context string of the previous or next topic in the
sequence. All of this is hard—coded—it cannot be determined automatically.
The Prev() and Next() commands do not work in secondary windows. The
actual file name must be specified in the TitleFile parameter because a
window name is being used. The command syntax does not permit the
general qchPath variable to be used with a window name.

The pictures are displayed in a table with the Keep with Next paragraph
format option. The table assures that the pictures remain in the same
positions between topics, preventing the appearance of the pictures jumping
around as the user changes topics. The formatting defines this portion of each
topic as a non—scrolling region, so the pictures remain visible even if the
topic contents are scrolled by the user.

Comment

Note that this application fails if the name of the MVB file is changed,
because the name must be hard—coded into the commands. If necessary, this
restriction can be avoided by writing a program to provide an external
command. That command could determine the file name while executing.

A Windows API function could have been called to minimize the main
window without requiring the window size and position. In this case there
was no value to the extra effort to define the desired external function.
Viewer’s {vfld137438953483}CloseWindow {v{ld-9007337234860343296}
command could not be used to eliminate the main window because that
would also close the secondary window.

The wide spacing between the buttons is caused by the table that was used.
How-To 4.2 demonstrates the effect of various techniques for creating button
bars.

The hard—coding of context strings in the commands can cause errors as
the application is revised. The commands in two topics must be updated
whenever a topic is added or removed. Careful documentation of the topic
context strings and references is especially critical when this technique is
used.



6.10 Tips and Tricks

= Commands can be copied from one table cell to another. They can then
be edited in the document, or by selecting the entire command and
invoking Topic Editor. If you edit the file name in the document, be sure
to add the new file to Baggage if necessary. This can be done in the
Project Editor main window by selecting the Baggage file folder tab and
using the Edit menu. If you edit the file name through Topic Editor, it
automatically unchecks the Store Picture in Baggage check box—be sure
to turn it back on. Topic Editor also asks if the previous file should be
removed from Baggage. Under these circumstances you should click on
the No button.

= Buttons, menus, and accelerator keys are the easiest interface elements to
modify. Viewer provides commands to add, delete, and redefine these
elements, and these commands can be easily executed within topic—entry
or group—entry scripts. If you need to change the commands executed by
part of your interface frequently, you should try to use these redefinable
elements. If you can’t, you should see if an external command could
simplify the procedure. This can make design options for your interface
practical that otherwise might be difficult to implement.

= Although Viewer does provide many opportunities for designing a
custom interface without special programming, programming may
provide improved speed or design simplicity. The Viewer documentation
provides sufficient information for an experienced programmer to write
any external commands required. Most programs that may be required
can be written in Visual Basic with the VBX controls included in the
enclosed CD—-ROM disk. This makes such programming easier for many
people. Experienced programmers can also be located and hired through
the Viewer section in CompuServe.

= The {vfld137438953482} window border{vfld11132555231232},
{vfld137438953482} caption{vfld11132555231232}, and
{vfld137438953482} Min{vfld11132555231232} and
{vfld137438953482} Max {vfld-541165879296} buttons can be
eliminated by calling the appropriate Windows API functions. For
example, the following commands can be added to your Config script to
eliminate the Max button and resizable border:
RegisterRoutine("user","SetWindowLong","UiU")
RegisterRoutine("user","SetWindowPos","Uuiiiiu")
{vfld137438953483}SetWindowlLong{vfld11132555231232}
({vfld137438953482}hwndApp{vfld3131967461654528}, -16,
0x16CA0000)
{vfld137438953483}SetWindowPos{vfld-35184913254711296}
(hwndApp, 0, 0, 0, 0, 0, 39)

To also eliminate the caption and Min button, use the following
SetWindowLong call instead:

SetWindowLong(hwndApp, -16, 0x16080000)

These commands are documented in the Windows Software
Development Kit (SDK) and some commercial books. These functions



should only be used by, or on the advice of, experienced Windows
programmers. Errors in the parameter values can cause major problems.

When defining file names with paths inside commands, all
{vfld137438953482} backslashes{v{ld13331578486784} must be
doubled because single

{vfld137438953484 } backslashes {v{ld280933810831360} are considered
to be RTF commands. For example, use EP("c:\\work\\myprog.exe"). If
the command is nested inside another command, use quadruple
backslashes. For example: CBB("my_button", "EP(*c:\\\\work\\\\

myprog.exe')")



= Edit Command

Edit Command: CreateButtan

ButtonlD: |

ButtonCaption: | g

Command: | ‘Contents(]'

0K | Cancel

ButtonlD: Specifies the identifier for the button




[CONFIG] - Configuration Script

Configuration Script:

Std20menus(]
Std20B uttarizl]

RegzterlRouting] ' mvbmp2”, "CoppBmp"’, "w=U55"]
ReqisterRoutine] myvmci2”’, "MCICommand”, "LU555"]
ReqisterR outing myvftzui2”, "SearchDialog®, "15U"]
CreateButton["btn_up', "&Up", "Contentz(]')

«| |

Edit Command._. Paste Command. .




Micivsull Word - CHAPG_1.RTF -
a| File BEdil View Insert Format  lools lable Window Help

CEE LaE [ EaE B=ERE parE aeE

Ak | e

[Normal | 3] Times New Nonen |[2] [0 [2] (Dl2|ul [E]|=1=1=] (2 0]zt [ ]
P L. £ s . e ]
r
1 apter-}:- Create a-Simple Application
|
|
----- Start-a- Erojectzect. 3.1
---------- Create dicectarezsect. 31 a7
---------- Cregte Prejzet-—lesect 31 0 j
----- —reate-ge i Topiccent 5.2
.......... . =Tin zect 3% 4"
.......... Cregte th=Faotnotessect 32 W 3
Footrote: ;l
i““l.;]nq.l Kl
ICB3|_“LI.1. up, " Conlenls ErableEullor"blo opB EBC bl wp'iT ||
Hopel 3 11 [ |
IC]:I:Il_“bu'. up, “hepIT geilMacls, " chep 30 EDC by oty
*“stctj_l_aﬂ
"D b up, gl gchlak, et 5 1M I 0w =
LI *
=] [+

[Pg9 521 9415 | & _n Col 1 [ 1o | | [HUM | |



= Edit Command

Edit Command: Appendlitem

MenulD: "rrur'u.J_n::n:nr'ufig'

MewltemlD: |‘mnu_s-:uunds'

ItemCaption: |‘Sn&unds'

Command: | “[FT henElzellshd ark'sounds"]," U ncheckibem mnu_sounds']

1] .4 | Cancel Help

tenulD; Specifies the identifier for the menu




[COMNAG] - Configuration Script

Lonfiguration Script:

St M erus]|
Che2JButtans])

DK I
F cgiztzi outine v bmp2"'. ' CopyBna®, "w=l35"]
F egizt=m outinel"mvrnci2”, "MLCIConnand”. IS 25"
[ eqist=Aloutie"mvftaoi"’, "D=arc-Dislag”, "USU"]
Feqizt=F cutne| reresysem dl’, “srd=lanSoand, "Cuf]
IngzthenJ mru_config, "Coakfigurator’, £)
Appardlber nnu_corhg’, nnu_sounds’, "Cofurds’ IFTheaE laflsM ik 2ounds"). " Unzhecklann
Apperditent mnu_corfid’ mnu_yGA" EYLAT IFThenllzMar< 5% GA™ . Unchesklleml nnu_sVES
Apperditer nnu_corbg, anu_SW0A" TROWEA!, TIT wer(lsk ark [ Ga " d vcleckb=m mmwg VCA
herklteml rre_SWTEA
SaveMalk[ 3VGA"

«| 1 -

| Edit Command... | | Pazlc Command. .. I

HE




a| File BEdil View Insert Format  lools lable Window Help

Micivsull Word - CHAPG_2.RTF -

Ak | e

CEE LaE [ EaE B=ERE parE aeE

[Normal | 3] Times New Nonen |[2] [0 [2] (Dl2|ul [E]|=1=1=] (2 0]zt [ ]

I 1L ] 11 ] 1* ] ] ] 1* ] IE ] |F ;l
; - Iy ™ ke Iy - ™ o . o - ,1 _I
&

1

Dar-soundsets scundsY
idaradlnbada s ity |
[

il
{emwe MIVEWEL ViewerBmald - [aptcr=" Tadedr-a Boper TEA Firture " [pirhure shevga brap 1]
1

Footrote: Closc

| 1+ Bl

i““l.;l.ln.ln:-u,::’ﬂ
#ln suurnl]
"TiTher (TetAark T amirda" "adF ayEoimd! corndaichimes waer', 15"

I“':-:'13':_*:1-.u:'t1.|raa~"|

Ligl el zhdarky YEA D humpll Xehkath, chr_Wies 9"

Hoty 8] o —
o 3

=] [+

[ Pg1 S2¢ 1 144 & _n Col 1 [ 1o | | [HUM | |



—| lHlowTo 6.1 Demo |*| =

File Edit Bookmark Help
Euntentslﬁ% i;a&l Hiztory I &1 I & _
Thiz 15 the T ontents topic. bIultrredic Viewer How To 6.3
Copyroht © 19949 Stephea Prott,

TThus exercise prepared by Stephen Proatt,

[Click snywhere on Lhe main window Lo
ceturn]




Configuration Script:

Std20menus(]
Std20B uttarizl]

RegzterlRouting] ' mvbmp2”, "CoppBmp"’, "w=U55"]

ReqisterRoutine] myvmci2”’, "MCICommand”, "LU555"]

ReqisterR outing myvftzui2”, "SearchDialog®, "15U"]
Adddccelerator[0:31, 2, JumplD[ 'chapb_4. mvbxWinl", "glozzan')
Adddcoelerator0x32, 2, "ExecProgram(sal exe’, 07

«] |

Edit Command._. Paste Command. .




How-To 6.4 Demo

File

Edit

Bookmark Help

Eﬂntentsléﬁa %&aﬁql Hiséury I £ I 23

[[his 15 the Contents topic,

Glossary -

Viewer Glossary

Accelerator key

AddAccelerator

Game Help




Micivsull Word - CHAPG_5.RTF -

a| kile BEdil View Insert Format

Ak | e

laals lable Window Help

CEE LaE [ EaE B=ERE parE aeE

[Normal | 3] Times
I I i | I

NewNamen [[2] [0 [3] (Dl vl [=]l=I=I=) et 8] [n]
|2 ] |4 |F IR

1 T L <L L -+ <
r

- - F - - - ,1

Fewr R VHWEL T awe MWERIFS, T

é'u'ieweti:lmpi:- E'L'iawaﬂ:tnI:A-

iimartn="nfteala) |- E|_m:=| wiE" e ) |
denntantsbmple  dpeesoushepls ¢

1

This-iz-the- Cottents tomc. 7
1
Thasmz-hme-19q
ATag-c-hne-2 9
Thisnz-hme-3 9
ATagnehne-19q
Thasoehme-59q
Alagng-hne-5q
Thasoehme-7 q
EYSERED TR, |
Thase=-hne-2
Tlag-1z-hne-1019

111

T T R A ¥ 1 1
E'n.':.en:raﬂ:mpi- E'he-we:Hm]:-!,-
i\ aner="Red)" | e nra="Hed)" |

[«

=1

[ Pg1 S2¢ 1 42 A _n 1

Col 1 [ 1o | | [HUM | |



{File Edit Bookmark Help

Previous

Go to another topic




= How-To 6.6 Demao HH

Contentz | Inden JGo Dack || 1listor Geaich

lrevinlz




File

How-To 6.6 Demo

Edil Buukmark Help

Contcntsz I s i_E_s;q‘.in Hi%éury I 4t I )

hi=

1=z tae Ccnzentz topoo.

. =¢ di=play ths=

Cze ths
n=xt toplc.

Contcnts

-

Previvus




Hnw-Tn R.F Nemn
File Edit Bookmark Help
Lnnlenlstli-x’sr _%_s‘g_,w.}:l Hizlnry I id I %

15 o5 e conl=als lopic, Tse e Sezl bullen 1o dsplay be nexl lop.

Sccondary Window

1] - -»

Cﬁ"lﬁ'-::nts Mcvious y [




How-To 6.3 Demao

Eunh:nlsl Inden Iﬁu -[I_m:kl | liskory l Geaich I L I I
R -




i How-To 6.8 Demo
| File Edit Bookmark Help

Fo e Forric

15 15 the first topic m section 2.




Previous

Thisg iz the third {and last) topic.







Most Viewer applications are compiled into a single MVB file. The
increasing popularity of CD—ROM drives, with their enormous capacity,
makes it practical to distribute even very large applications in a single file.
Despite that, some applications lend themselves to being divided into two or
more files. Examples of when this might be more practical include the
following:

U When part of the application information changes frequently, while the
rest is stable. Dividing these portions into separate files might reduce
the compilation time greatly—you don’t need to recompile the stable
portions.

U  When two or more authors are independently developing portions of
the application. Separating these portions could simplify the process of
compiling and testing.

U  When not enough disk space is available to compile the entire
application into a single file. Chapter 2 explaines the tremendous
amount of space that a large application can require.

At this point you might ask “What’s the big deal? I know how to code
interfile jumps. I saw the field for the file name while I was doing the other
How—Tos.” It’s true that many parts of designing a multifile application are
easy—the standard Back and History buttons let the user return to a different
file, and Topic Editor lets you fill in a field with the name of the file for hot
spots and jump commands. You don’t even need to remember the syntax!
Unfortunately, side effects can cause serious problems unless you prevent
them.

One problem arises because the Contents button displays the contents
topic of the current file by default. The command associated with this button
must be modified so that the user can click on this button from the “other”
file and have the proper topic displayed. How-To 7.1 demonstrates a simple
solution to this problem.

A second problem may arise if you have a topic entry command in one file
that jumps to a topic in the other file. What happens if the user then clicks on
the Back button? Viewer redisplays the previous topic, which causes the
topic entry command to be executed again. Oops! The user is right back
where he or she started! One way you would run into this problem is if you
wanted to define all your keywords in your primary file, so that your index is
complete, even though some of these keywords should cause a topic in a
secondary file to be displayed. The only way to do this is by defining
keywords in a special topic in the first file. That topic would have a topic
entry command that jumps to the desired topic in the secondary file. How—To
7.2 demonstrates a solution to this problem.

Another problem is that the standard search and index functions only
display topics within the current file. This is a problem with most multifile
applications. A multifile search can be developed based on the sample Search
program, written in C, that is included with Viewer. This is not simple—it
requires an experienced programmer. A multifile keyword index can be
simulated with a multifile search by defining the desired terms as an author-
defined data field in a search operation. This simulation can list the defined
values if they are defined in a word wheel. Chapter 11 describes the standard
search functions in detail.

All of these problems can be eliminated, or at least greatly reduced, by



your application design. For example, a secondary file that is only used to
hold popup topics never presents these problems because the user can’t jump
to that file in the first place. A design with highly segregated parts, and no
opportunity to jump between major areas, minimizes the opportunity for
problems.

If you want to use multiple files because you have several authors working
together, consider using multiple document files—one for each author. These
files are eventually compiled together into a single MVB file. This is very
easy to do. The Project Manager’s Edit menu has items for inserting,
changing, or deleting lines from the list of document files. Define the
Contents topic carefully to be sure the right topic is used for that purpose.
You should have one document file for the common front—end topics, and
then divide up the rest of the project as desired.

This chapter doesn’t show you how to solve all of these problems, but it
does demonstrate some helpful basic techniques. How—To 7.1 demonstrates
the basic operations involved, and How—To 7.2 shows a useful solution to the
problems.



71 Howdoll ...

Use Simple Interfile Operations?
Complexity: EASY

Problem
I want to display topics in another MVB file through popups and jumps.

Technique
You create the standard directories with two project files, two document files,
and two M VB files. The file names have a suffix of P for the primary file and
S for the secondary file.

(To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP7 1 and the standard subdirectories—TEXT,
SOUNDS, PICTURES, and MOVIES—under CHAP7 1. Create these
four directories for all projects, even if some are not needed.

Next create the primary files:

2. Use Viewer’s Project Editor to create a new project file named
CHAP7_1P.MVP in your VIEWERHT\CHAP7 1 directory. Enter the
name of your document file as TEXT\CHAP7 _1P.RTF.

3. Choose Title Options from the Section menu to display the Title Options
dialog box. Enter contents in the Contents Topic field. Click on OK.

4. Choose Config from the Section menu. Paste in a CBB command, then
edit it. Select "btn_contents' from the pull-down list in the ButtonID
field, and select Contents() in the Command field. Click on OK in each
dialog box to return to Project Editor.

5. Save your project file by choosing Save from the File menu.

6. Use Project Editor to start Word and create your document, and create a
new topic with context string contents. Be sure to delete the page break
that is created before your topic.

7. Use Topic Editor to define a Topic Title of Primary contents.

8. Enter text as a heading line:
This is the Contents topic in the primary file.

9. Insert a few blank lines and enter the text:
Pop up from Secondary file

10. Select the text you just entered, and bring up Topic Editor to define a Hot
Spot (text). Click on Popup as the Hot Spot Type, then select the Jump
to... element.

11. Enter “popup_1s' in the Context field, leave the Window field blank,
and enter 'CHAP7_1S.MVB' as the MVB Filename.

12. Click on OK to return to the document.



13. Insert a couple of blank lines and enter the text:
Jump to the secondary file

14. Select the text you just entered, and bring up Topic Editor to define a Hot
Spot (text). Select the Jump to... element.

15. Enter "topic_2s' in the Context field, leave the Window field blank, and
enter CHAP7_1S.MVB' as the MVB Filename. Click on OK to return to
the document.

16. Insert another couple of blank lines and enter the text:

Jump to the secondary file via a topic entry command

17. Use Topic Editor to make this a hot spot jumping to context string
topic_2p in the current file.

18. Use Topic Editor to define a new topic with context string topic_2p, and
define a topic title of Primary topic 2.

19. Use Topic Editor to define a Topic Entry command, click on the Paste
Command button, and select the JumpID command. Click on OK.

20. Click on the Edit Command button, then enter *CHAP7_1S.MVB' in the
TitleFile field. Enter a space in the WindowName field, and enter
“topic_2s' in the Context field. Click on OK twice to return to the
document.

21. Enter the text:

This is topic 2 in the primary file.

22. Save the document file and compile as usual.

Next create the secondary files:

23. Use Viewer’s Project Editor to create a new project file named
CHAP7_1S.MVP in your VIEWERHT\CHAP7 1 directory. Enter the
name of your document file as TEXT\CHAP7_1S.RTF.

24. Choose Config from the Section menu. Paste in a CBB command, then
edit it. Select "btn_contents' from the pull-down list in the ButtonID
field, and select JumplID() in the Command field. Edit the JumpID
parameters to read JumplID("chap7_1p.mvb', “contents'). Click on
OK in each dialog box to return to Project Editor.

25. Save your project file.

26. Use Project Editor to start Word and create your document, and create a
new topic with context string popup_1s. Be sure to delete the page
break that is created before your topic.

27. Enter the text:

This message comes to you from the secondary file

28. Create a new topic with context string topic_2s and topic title
Secondary Topic 2. Enter text:
This is topic 2 in the secondary file.

29. Save the document file and compile as usual.

Now test the files:



30. Choose Open from Project Editor’s File menu to reopen the primary
project file, then run Viewer to display the primary MVB file.

31. Click on the popup hot spot and see what happens.

32. Click on the first Jump to hot spot and see what happens. Click on the
History button and see what is shown. Click on the Go Back button and
see what happens. Click on the History button again and see what is
shown.

33. Click on the second Jump to hot spot and repeat the procedure in step 32.
Were you able to get back to the primary file? The History list should
look like Figure 7—1.

{ewc vwrht2, TsTextButton, "Figure
7iy21"[Macro=JI(' viewerht.mvb>SecWin', ‘fig7 1')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

34. While in each file, click on the Contents button. See which topic is
displayed.

How It Works

In steps 9 through 11 you created a popup hot spot in the primary file that
displays a topic from the secondary file. The only difference in procedure
from defining a normal popup is entering a value in the MVB Filename field.
In the document this appears as @CHAP7_1S.MVB following the context
string. This is the signal to Viewer that this is an interfile jump or popup. The
jump hot spot created in steps 12 through 15 is created the same way, and
looks very similar.

The jump in the third hot spot, created in steps 16 and 17, is a standard
jump to another topic in the primary file. The second topic is created in steps
18 through 21. It contains a JumpID command that executes automatically
when the topic is displayed. The JumpID causes a topic in the secondary file
to be displayed. The result of these steps is that clicking on the hot spot
displays topic topic_2p, which in turn immediately displays topic topic_2s.

When testing, the popup and the first jump hot spot should have performed
exactly as you’d expect. Users would not be able to tell that two files were
involved unless they looked at the History list. The list contains entries in the
form Filename: Topic Title. Entries for the file currently being displayed
show just the topic title, while entries for topics in any other files show the
file name and topic title.

After clicking on the third hot spot and jumping to the secondary file, you
should not have been able to return to the primary file by using the
{vfld137438953484} Go Back{vfld-9151452422936199168} button. This
button causes the previous topic, in the primary file, to be displayed—but
that topic contains the topic entry command that jumps back to the secondary
file. This problem is described in the introduction to this chapter. How—To
7.2 demonstrates a solution to it.

Clicking on the Contents button while in either file should have displayed
the proper topic. You defined a Config script for the secondary file in step 24
that associates the button with a JumpID command that specified the contents



topic in the primary file. A similar script in the primary file, created in step 4,
associates a Contents() command with that button. These scripts ensure that
the button always causes the proper topic to be displayed, because they are
executed every time the file is loaded or a window is displayed. Each jump
between files thus causes the new file’s script to be executed.

Comment
As you saw in this How—To, interfile popups can be defined with no side
effects. Unfortunately, such a design rarely provides any useful value.

Simple interfile jumps from hot spots are also practical, as long as the
Contents button is redefined properly and the appearance of the History list is
acceptable.

This case was simple because you were able to redefine the Contents
button every time either file was displayed. What if you need to change the
button based on which topics are displayed or are about to be displayed? This
is not as simple as it seems—where are you going to execute the command to
redefine the button? If the user can jump into the second file at any topic, you
have to be sure the right command is always executed. You also have to be
able to change it back when the user returns to the original file. The multifile
support in the Back and History buttons can make this a complex problem,
because you might not be able to control your user’s path between the files.
The best way to solve such problems is to carefully avoid them in your
application design.



7.2 Howdoll ...

Use the Go Back Button Between Files?
Complexity: EASY

Problem

I want to define keywords in one file that display topics in a second file. The
user must be able to use the Go Back button normally, even if the previous
topic is in the other file.

Technique

The keywords in the primary file are defined in a topic containing topic-entry

commands that jump to the secondary file and handle the return properly.
You create the standard directories, project file and document file for this

How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and create the primary files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP7 2, and the standard subdirectories—TEXT,
SOUNDS, PICTURES, and MOVIES—under CHAP7 2. Create these
four directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file named
CHAP7_2P.MVP in your VIEWERHT\CHAP?7_ 2 directory. Enter the
name of your document file as TEXT\CHAP7_2P.RTF.

3. Choose Title Options from the Section menu to display the Title Options
dialog box. Enter contents in the Contents Topic field. Click on OK.

4. Choose Config from the Section menu. Paste in a CBB command, then
edit it. Select "btn_contents' from the pull-down list in the ButtonID
field, and select Contents() in the Command field. Click on OK in each
dialog box to return to Project Editor.

5. Save your project file by choosing Save from the File menu.

Use Project Editor to start Word and create your document, and create a
new topic with context string contents. Be sure to delete the page break
that is created before your topic.

7. Use Topic Editor to define a keyword of primary contents, as shown in
Figure 7-2.

{ewc vwrht2, TsTextButton, "Figure
7i; 22" [Macro=JI(" viewerht.mvb>SecWin', "fig7 2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

8. Use Topic Editor to define a Topic Title of Primary contents.

9. Enter text as a heading line:
This is the Contents topic in the primary file.

10. Insert a few blank lines and create a hot spot with text Jump to second
topic that jumps to context string topic_2p.



11. Create a new topic with context string topic_2p, keyword primary
second and title Primary second topic.

12. Enter the following text:
This is the second topic in the primary file.

13. Create a new topic with context string topic_3p, keyword special, and
title primary third.

14. Choose Footnote from Word’s Insert menu, click on Custom Footnote
Mark, and enter an exclamation point (!) in the field.

15. Word displays the Footnote pane at the bottom of the window, with the
insertion point following an exclamation point. Enter the following text on one
line, as shown in Figure 7-3:
{v{1d2305865549202063371}IfThenElse{vfld12232066859008}
({vfld137438953483}IsMark{vfld12232066859008} ("forward"),
"{vfld137438953483}DeleteMark{vfld12232066859008} (" forward');
{vfld137438953483}Back(){vfld12232066859008}",
"{vfld137438953483}SaveMark{vfld3473682146420326400}
(“forward'); JI(" chap7_2s.mvb', topic_1s")")

{ewc vwrht2, TsTextButton, "Figure
713" [Macro=JI(' viewerht. mvb>SecWin', ‘fig7 3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

16. Click on the Close button at the top of the Footnote pane.

17. Enter the following text in the topic:
This topic should never be displayed.

18. Save your document file and compile as usual.

Next create the secondary file:

19. Use Viewer’s Project Editor to create a new project file named
CHAP7_2S.MVP in your VIEWERHT\CHAP?7 2 directory. Enter the
name of your document file as TEXT\CHAP7_2S.RTF.

20. Choose Config from the Section menu. Paste in a CBB command, then
edit it. Select "btn_contents' from the pull-down list in the ButtonID
field, and select JumpID() in the Command field. Edit the JumpID
parameters to read JumplID(" chap7_2p.mvb', “contents'). Click on
OK in each dialog box to return to Project Editor.

21. Save your project file.

22. Use Project Editor to start Word and create your document, and create a
new topic with context string topic_1s and title Secondary. Be sure to
delete the page break that is created before your topic.

23. Enter the text:

This message comes to you from the secondary file

24. Save your document file and compile as usual.

Next test your application:
25. Choose Open from Project Editor’s File menu to reopen the primary
project file, then run Viewer to display the primary MVB file.

26. Click on the Index button, then select the entry Primary Second. See



which topic is displayed.
27. Repeat step 26 for the entry Special. See which topic is displayed and
examine the History list.

28. Click on the Go Back button. See which topic is displayed, and examine
the History list again. It should look like Figure 7-4.

{ewc vwrht2, TsTextButton, "Figure
7i; 24" [Macro=JI(' viewerht. mvb>SecWin', ‘fig7 4")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

29. Try other operations, including using the Contents button from each file.

How It Works

The Config scripts for both the primary and secondary files, created in steps
4 and 20, redefine the command associated with the Contents button just as
in How—To 7.1. This assures that the button is always associated with a
command that causes the proper topic to be displayed, no matter which file is
active. (This is explained in detail in How—To 7.1.)

The topic where the keyword special is defined is never seen—the topic
entry command is executed immediately, and it always causes a jump to a
different topic. This topic’s sole purpose is to cause the right topic to be
displayed next, based on how you reached this special “traffic-cop” topic. It
jumps to the desired topic in the secondary file the first time it is executed,
and jumps to the previous topic in the primary file the next time. The jump to
the secondary file displays the topic associated with the keyword, and the
second jump displays the topic that the user would expect to see after
clicking on the Go Back button.

The topic entry IfThenElse command starts by testing for a mark named
Jforward. If the mark exists, the commands in its second parameter are
executed. If the mark doesn’t exist, the commands in the third parameter are
executed. The mark doesn’t exist the first time this topic is displayed, so a
SaveMark command is executed, thus creating the forward mark, followed
by a JumpID command specifying a topic in the secondary file. The entry
command is executed again when you return by clicking on the Go Back
button. This time the mark does exist, so a DeleteMark command is executed
to remove it, followed by a Back() command to redisplay the preceding topic.

This topic entry command only works properly if the topic is entered in
the expected sequence. What would happen if you returned to the primary
file by using the History button, then used the Index button and selected the
special keyword again? The mark would still exist, so Viewer would delete it
and execute the Back() command instead of jumping to the secondary file.

Comment

The potential problem this How—To solves has often occurred in the
Windows Help system when authors want to make use of existing help files.
It should never arise in Viewer except as a result of poor planning. As you
can see, there aren’t any good solutions other than avoiding the problem in



the first place.



7.3 Tips and Tricks

= If you want to use
{vfld137438953482}secondary windows{vfld13331578486784} in
conjunction with multiple files, you must be careful to define the
{vfld137438953484}secondary window {vfld4926370438184960} in the
file containing the topics displayed in that window. It doesn’t matter
which file contains the command or hot spot that causes the topic to be
displayed.

= If you run into other problems, you might be able to solve them by
defining all of the topics in the secondary file as part of a special topic
group. This group would exist solely to support group entry or group exit
commands similar to the command in How—To 7.2. Note that the Viewer
manual describes the sequence of group and topic commands incorrectly.
When entering a group, the group commands are executed first, and then
the topic commands.

= If Viewer reports that it can’t find your alternate file, it may be because
the current directory isn’t the project directory. You can solve this by
starting the File Manager, selecting the project directory (which sets the
current directory), and double—clicking on the primary MVB file. Viewer
searches for files using the standard Windows sequence—the current
directory, the Windows directory, the Windows System directory, and the
directories listed in the DOS PATH command in the AUTOEXEC.BAT
file. If the file still isn’t found, Viewer checks the [FILES] section of the
VIEWER.INI file. This INI file is described in Appendix
A.oicefi{vfld137438953482} {v{ld7306245429312618496}



Secondary Topic 2
CHAP?_1P:Primary topic 2
CHAF?_1P:Primary contents
Secondary Topic 2

CHAP?_1P:Primary contents




Yiewer Ele

ik

ments:

Viewer Topic Editor - CHAPY 2P.MYP

114

Keyword Index:

|EI - Main Eeywiord [ndex

| [#]

Topic Keywords [one per line]:

primary contents

[ [+

Cancel

About___




MivrvsullSurd - CHAFY_ZP.RTF -

Ak | e

a| File BEdil View Insert Format  lools lable Window Help

o8] [tRl@] [# [=EEx] Bl==RIE] [E=lrE] w==)
|fuulru:|tch::|t |E TimNcwﬂunnnlEhﬂ E |]]|I|E||§|§I§I§”T|TI-‘IT-IEI
i |# [ IF |F

Ir 1 1 1 ] 1 1 : 1
M [

v 3 - - 3 - - F - - - ,1

| 1+]

#3. This is the C outents topicin-the primary file g

#EY Thes Lo shouc e verb sdispleyend

I+ Ml

Footrote: Closc

i“‘Elfl.lf.lil; 54
eprecdy|
*p:i:[m:y'llﬁ.tl.iﬂ
I IfThenZlselshlats™ forerand™, "Tielebeh b Forward™; Dack)', "Sawe B ads Fovarard”,
I chap? 2500l topiz 1507

LI

l+]

T [+

[Pg2 521 O I Y _n Col 32 | 100% | | [HUM | |




Primary second topic

CHAP?Y_25:Secondary
primary third

Primary second topic
Primary contents







You can make your application more interesting and exciting by using
sounds. Viewer gives you a number of techniques that cause a sound to be
played. A sound can be played
U  Automatically, when the application is loaded
Automatically, when a topic is displayed
When the user clicks on a button
When the user clicks on a text hot spot
When the user clicks on a graphic hot spot
When the user clicks on a special control button

c:.c:cCc:C:C:

Most of these should look familiar to you from previous How—Tos, since
these are the same ways that a Viewer command can be executed.

You can play sound files by executing an external Windows function.
External commands must be defined to Viewer through Viewer’s
RegisterRoutine command—then they can be used just like any standard
built—in commands.

The special control buttons (the last item in the above list) are produced by
a Viewer embedded window command that helps you use both sounds and
movies in your application. This command is demonstrated in How—Tos 8.1
and 8.2, and also in Chapter 9. Embedded window commands only function
while they are visible in the window. They load the entire sound file into
memory as soon as their portion of the topic is displayed. This can require
significant time and memory if the file is large.

Two types of sound files are supported by Viewer. {vfld-
9223356093936173046} Wave files{vfld11132555231232} have a file
extension of WAV, and contain a digital representation of the actual sounds.
Wave files can contain any sounds desired, such as spoken voices, sound
effects, or music. {vfld-

9223356093936173046} MIDI files{vfld280933810831360} have a file
extension of MID, and contain instructions to an electronic synthesizer.
These instructions tell the synthesizer to play particular notes with specified
instrument sounds, durations, and rhythms. Several instruments can play at
the same time, and each can play several notes together. MIDI files can only
play music or other sounds built into the synthesizer.

A sound card, external speakers, and associated software drivers must be
installed in the computer in order to play sound files. Viewer does not
support the speaker built into the computer, or the driver software used with
that speaker. How—Tos 8.3 through 8.5 show you how to test for the needed
drivers, and alter your application’s behavior accordingly. Many companies
make sound cards with a wide range of capabilities. Two of the most popular
product lines are Pro Audio Spectrum (made by MediaVision) and Sound
Blaster (made by Creative Labs).

Wave files can be created using programs that are distributed with sound
cards and drivers. For example, the MediaVision Pro Audio Spectrum card
comes with a program called Pocket Recorder. Commercial programs are
also available to serve users with more exacting requirements. Viewer’s
WaveEdit program can be used to modify an existing wave file, as described
in section 2.4.

MIDI files are created and edited by specialized commercial programs
known as sequencers. These range from limited—function packages to high—
powered systems designed for professional musicians. A popular line of



midrange packages is sold by MidiSoft.



8.1 Howdoll ...

Play a Sound?
Complexity: EASY

Problem
I want the user to hear selected sounds by clicking on a button. The sounds
could be produced from either wave or MIDI files.

Technique
You use Viewer’s multimedia command to create the standard set of control
buttons.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 1, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAPS 1. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the sound files for this How—To from the
VIEWERHT\HOWTOS\CHAPS\CHAPS I\SOUNDS directory on the
CD-ROM to the VIEWERHT\CHAPS 1\SOUNDS subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPS 1 directory. Enter the name of your document file
as TEXT\CHAP8_1.RTF.

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this topic doesn’t need a context string. Viewer displays the first
topic when a file is loaded unless you specify otherwise.

Now you can proceed with adding a sound:

5. Invoke Topic Editor and select Multimedia (using ewX with MVMCI2).
Click on the Options button to display the Multimedia Options dialog
box.

6. Seclect the file SOUNDS\CHAPS 1.WAY, and click on the Store File in
Baggage check box.

7. Leave the MCI Device field as {vfld137438953482} WaveAudio{vfld-
92233494968664064001}, leave the Show Controller check box selected,
leave the Text—Aligned Position selected, and leave the Play Entire File
check box selected. Click on the Layout button and enter the caption
Wave file. The completed dialog box should look like Figure 8—1. Click
on OK twice to return to the document.

{ewc vwrht2, TsTextButton, "Figure
8iy/21"[Macro=JI(" viewerht.mvb>SecWin', "fig8 1')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



8. Insert a few blank lines, then repeat steps 5 through 7 to create another
controller, selecting MCI Device Sequencer, selecting file SOUNDS\
CHAPS 1.MID, and entering the caption MIDI file. Note that you cannot
select the Store File in Baggage check box, because the MCI driver
programs that handle these files don’t include the necessary support.
Click on OK twice to return to your document.

9. Save your file and compile as usual. The window should show the
standard multimedia controllers with captions, as shown in Figure 8-2.

{ewc vwrht2, TsTextButton, "Figure
8i( /2" [Macro=JI("viewerht.mvb>SecWin', 'fig8 2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

10. Click on the second button (with the right arrow) on the control labelled
Wave File. This is the Play/Pause button. The wave file plays, and the
slider moves to show what portion of the file is playing. Click on the first
button, containing a square, while the file is playing—the sound stops
and the slider returns to the beginning. Drag the slider and click on the
Play/Pause button—the file begins playing at the point represented by the
slider’s position.

11. Repeat step 10 for the MIDI controller. Also click on the Play/Pause
button while the file is playing. It pauses, and resumes from the same
point when you click on it again.

How It Works
The command you inserted with Topic Editor displays the standard
multimedia controller buttons. The standard controller contains a Play/Pause
button, a Stop button, and a progress slider. How—To 8.2 shows you how to
design your own controller. You usually should specify a caption to provide a
label for the controller.

Each type of file uses a different MCI device. Wave files use the
WaveAudio device, and MIDI files use the Sequencer. Other device names
are used in Chapter 9.

Comment

The controller is not seen if the Show Controller check box is cleared. This is
only useful if the Auto—Start check box is set—otherwise, how would your
file be played?

A Multimedia controller can be placed anywhere—within the body of a
topic, in the non—scrolling region, in a separate pane, in a popup window, or
in a floating secondary window. Consider the visual impact of each possible
location while designing your application.

The purpose of multimedia controllers is not obvious to your users. Be
sure to make the purpose of each one clear, and provide instructions for their
use.






8.2 Howdoll ...

Add Custom Control Buttons?
Complexity: EASY

Problem
I want to give my users more control over sound playing than just the play
and stop buttons in the standard controller.

Technique
You use Viewer’s multimedia command to create a custom set of control
buttons.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 2, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAPS 2. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the sound files for this How—To from the
VIEWERHT\HOWTOS\CHAPS\CHAPS 2\SOUNDS directory on the
CD-ROM to the VIEWERHT\CHAPS 2\SOUNDS subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPS_2 directory. Enter the name of your document file
as TEXT\CHAP8 2.RTF.

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this topic doesn’t need a context string. Viewer displays the first
topic when a file is loaded unless you specify otherwise.

Now you can create the customized controller:

5. Invoke Topic Editor and select Multimedia (using ewX with MVMCI2).
Click on the Options button to display the Multimedia Options dialog
box.

6. Seclect the file SOUNDS\CHAPS 2.WAY, and click on the Store File in
Baggage check box.

7. Leave the MCI Device field as WaveAudio, leave the Show Controller
check box selected, leave the Text—Aligned Position selected, and leave
the Play Entire File check box selected. Click on the Layout button and
enter the caption Custom Controller. Click on OK.

8. Click on the Edit Controller button to display the MCI Controller dialog
box.

9. Click on the Custom Controller Type radio button to enable the custom
choices.

10. Click on the Play option. Notice that the Play/Pause button option is



unselected when you do this—you can’t have both at once. Click on the
Pause option.

11. Click on the Scan Backward and Scan Forward options. Notice that the
Step Size field is activated and filled in as soon as you select one of these
buttons. Leave that field set for 1000 milliseconds (1 second). The
completed dialog box should look like Figure 8-3

{ewc vwrht2, TsTextButton, "Figure
8i( /23" [Macro=JI(" viewerht.mvb>SecWin', "fig8 3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

12. Leave the Eject, Previous Section, and Next Section options off. Leave
the slider options selected, and click on OK in each dialog box until you
return to the document.

13. Save the document file, and compile and test as usual. The control should
look like Figure 8—4. Try each of the buttons.

{ewc vwrht2, TsTextButton, "Figure
8i( /24" [Macro=JI("viewerht.mvb>SecWin', 'fig8 4")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The multimedia command inserted by Topic Editor displays the controller
with the buttons you selected. The standard controller contains a Play/Pause
button, a Stop button, and a progress slider. This How—To demonstrates all of
the custom buttons suitable for sound files: Scan Backward, Scan Forward,
Stop, Pause, and Play.

Comment

The {vfld137438953482}eject button{vfld11132555231232} ejects a CD
when playing {vfld137438953482} CDAudio{vfld-7998112004399169536}
files. Previous Section and Next Section buttons apply to files that are
divided into sections. Sections are demonstrated in How—To 9.3.



8.3 Howdoll ...

Play Sounds Automatically?
Complexity: INTERMEDIATE

Problem
I want to play a sound file automatically when a topic is displayed.

Technique
You use two Windows API external commands. The first command,
{vfld137438953483 } waveOutGetNumDevs {vfld12232066859008}, lets you
test for the presence of the wave drivers required. The second,
{vfld137438953483}sndPlaySound{v{ld8142789060096688128}, is used to
play the sound file.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 3, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAPS 3. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the sound file for this How—To from the
VIEWERHT\HOWTOS\CHAPS\CHAP8 3 directory on the CD-ROM
to the VIEWERHT\CHAPS_3 subdirectory on your hard drive. Note that
you are not copying it to the SOUNDS subdirectory this time, as you did
in most previous How—Tos.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPS 3 directory. Enter the name of your document file
as TEXT\CHAP8_3.RTF.

Next define the external commands, and then execute them:
4. Choose Config from the Section menu, then click on the Paste Command
button and select the RegisterRoutine command. Click on OK.

5. Click on the Edit Command button and enter ~“mmsystem' in the
DLIName field, *waveOutGetNumDevs' in the FunctionName field,
and “u='1in the Parameters field. The completed dialog box looks like
Figure 8-5. Click on OK.

{ewc vwrht2, TsTextButton, "Figure
8i( /25" [Macro=JI(" viewerht.mvb>SecWin', "fig8 5")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

6. Repeat steps 4 and 5 to insert another RegisterRoutine command in the
script, entering - mmsystem.dll' as the DLLName, “sndPlaySound' as
the FunctionName, and ~Su' as the Parameters. Click on OK.



7. The completed script should look like Figure 8-6.

{ewc vwrht2, TsTextButton, "Figure
8i( /26" [Macro=JI(" viewerht.mvb>SecWin', 'fig8 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

8. Save the updated project file.

Now create the document file:

9. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this topic doesn’t need a context string. Viewer displays the first
topic when a file is loaded unless you specify otherwise.

10. Insert a few blank lines, and create a text hot spot with the text Go to
next topic, which jumps to context string topic_2.

11. Create a new topic with context string topic_2.

12. Use Topic Editor to create a topic entry command, using the [fThen
command. Enter waveOutGetNumDevs() in the Condition field, and
"sndPlaySound( chap8_3.wav', 0)" in the Command field.

13. Enter a line of text as follows:
You should have heard the sounds if you have a sound card.

14. Save the document file, and compile and test as usual. When you click on
the hot spot you see the second topic. The sound file is played if you
have a sound card and drivers installed.

How It Works

The RegisterRoutine command, in steps 4 through 6, defines external
commands. The first parameter is the name of the file containing the
command. These files usually have DLL as the file name extension, and are
known as DLL files. The second parameter is the name of the command
being defined, and the third defines the data types of the command’s
parameters. For example, S is used to indicate a string, and « an unsigned
integer. If an equal sign is part of this parameter, the single character
preceding the sign defines the value returned by the command. The
waveOutGetNumDevs command in step 5 returns an unsigned integer. The
sndPlaySound command in step 6 takes two parameters—a string and an
unsigned integer.

The {vfld137438953483} waveOutGetNumDevs{vfld12232066859008}
command returns the number of wave output devices that are present in the
computer. This usually is 1 if a sound card and drivers are installed, or O if
not. A similar command,

{vfld137438953483 }midiOutGetNumDevs{vfld3131967461654528},
returns the number of MIDI output devices. These commands are part of the
standard Windows MMSYSTEM.DLL file that includes most of the
Windows multimedia functions.



The {vfld137438953483}sndPlaySound{vfld11132555231232} command
plays wave files. No user controls are used—it plays the file as soon as it is
executed. The first parameter is the name of the sound file or the name of a
system sound defined in the [sounds] section of the
{vfld137438953482} WIN.INI{vfld8070731466058760192} file, such as
SystemQuestion. This command does not support Baggage—any files used
by this command must be separate from the MVB file. This command also
does not support paths, which is why the file had to be copied into the same
subdirectory as the MVB file. The second parameter is referred to as the flag
parameter. It contains a code, where 0 means that the command should not
return to Viewer until the file has finished playing, and 1 means that Viewer
continues with other commands or operations while the sound continues to
play.

In step 12 you define an
{vfld137438953483 } IfThen{vfld72057052872048640} command that uses
the external commands just described. The IfThen command is defined as a
topic entry command, which means that it executes when the topic is
displayed. The IfThen command treats a value of 0 in its condition as false,
and any other value as true. It only executes the command in its second
parameter if the condition is true. The return from waveOutGetNumDevs
thus corresponds perfectly—0 means that sound is not supported, and 1
means it is supported.

Comment

The RegisterRoutine command lets you extend the capabilities of Viewer to
include functions in Windows DLLs or custom—written commands. The
ability to use values returned by external commands makes it possible for
your Viewer application to alter its operation based on information obtained
automatically from the user’s computer.

The names of external commands defined through the RegisterRoutine are
case—sensitive. In other words, sndPlaySound works but SndPlaySound
doesn’t. These errors don’t cause error messages—the command just isn’t
executed. You can go crazy trying to find such mistakes!

The IfThen command cannot be used with embedded commands such as
the multimedia control used in How—Tos 8.1 and 8.2.

The sndPlaySound command is described in detail in How—To 8.5.



8.4 Howdoll ...

Add a Spoken Greeting?
Complexity: INTERMEDIATE

Problem
I want to greet users with a spoken message when my application is first
loaded.

Technique
You use the Windows waveOutGetNumDevs command to determine if
sounds are supported, and the sndPlaySound command to play the file. The
commands execute in the Config script.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 4, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAPS 4. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the sound files for this How—To from the
VIEWERHT\HOWTOS\CHAPS\CHAP8 4 subdirectory on the CD—
ROM to the VIEWERHT\CHAPS 4 subdirectory on your hard drive.
Note that you are not copying it to the SOUNDS subdirectory this time,
as you did in most previous How—Tos.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPS 4 directory. Enter the name of your document file
as TEXT\CHAP8_4.RTF.

Next define the external commands, and then execute them:

4. Choose Config from the Section menu, then click on the Paste Command
button and select the RegisterRoutine command. Click on OK.

5. Click on the Edit Command button and enter ~mmsystem' in the
DLLName field, "waveOutGetNumDevs' in the FunctionName field,
and “u="'in the Parameters field. Click on OK.

6. Repeat steps 4 and 5 to insert another RegisterRoutine command in the
script, entering - mmsystem.dll' as the DLLName, “sndPlaySound' as
the FunctionName, and ~Su' as the Parameters. Click on OK.

7. Paste in an IfThen command, and enter waveOutGetNumDevs() in the
Condition field. Change the Command field to

"sndPlaySound( chap8 4.wav', 0)"

8. The completed dialog box looks like Figure 8—7. Click on OK in each
dialog box, then save your project file.

{ewc vwrht2, TsTextButton, "Figure



8i; 2 T"[Macro=JI( viewerht. mvb>SecWin', 'fig8 7')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Next create a minimal document file:

9. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this topic doesn’t need a context string. Viewer displays the first
topic when a file is loaded unless you specify otherwise.

10. Enter a line of text:
If you have a sound card, you should have heard the greeting.

11. Save the document file, and compile and test as usual.

How It Works

The external commands are defined through the RegisterRoutine commands
in steps 4 through 6. They are executed within the IfThen command that is
added to the Config startup script in step 7. These commands are described in
How-Tos 8.3 and 8.5.

The sndPlaySound command does not support
{vfld137438953484 } path names{v{ld2377762623132270592}. This is why
you had to copy the sound file into the same subdirectory as the MVB file.
The sequence of directories searched for the file is described in How—To 8.5.

In this case, the [fThen command is executed when the file is loaded,
rather than when a topic is displayed, by placing it in the Config script
instead of defining it as a topic entry command. This demonstrates the variety
of effects that you can provide for your user by combining common
operations in different ways.

The Viewer {vfld137438953484}window {v{ld13331578486784} does not
{vfld137438953484 }appear{vfld-9223356093936173056} until after the
sound file has finished because you used 0 in the flag parameter. How—To 8.3
explains that 0 means the processing should not continue until the file has
been played, and 1 means that other processing should continue. If you
change the value to 1 and recompile, the window appears during the greeting.

Comment

The command to play the sound file is executed as part of the Config script
so that it executes when the file is loaded. This also executes every time a
secondary window is displayed from this file, or after a jump from a different
MVB file. How—To 5.10 demonstrates an alternative method of executing a
command only when the application is initially loaded.

A similar {vfld137438953482}good-bye message{vfld-
9223356093936173056} could be played by adding the proper commands to
the Exit button and the Exit choice from the File menu. Be sure to use 0 as
the flag parameter with the sndPlaySound command, so that the Exit()
command is not executed until the sound file has finished playing.






8.5 Howdoll ...

Play Continuous Background Music?
Complexity: INTERMEDIATE

Problem
I want to play background music continuously while the user performs other
operations.

Technique
This example demonstrates two ways to play a sound file continuously. One
uses the standard multimedia control used in How—Tos 8.1 and 8.2. The other
uses the sndPlaySound external command as in How—Tos 8.3 and 8.4,

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPS 5, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAPS 5. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the sound file for this How—To from the
VIEWERHT\HOWTOS\CHAPS\CHAP8 5 subdirectory on the CD—
ROM to the VIEWERHT\CHAPS 5 subdirectory on your hard drive.
Note that you are not copying it to the SOUNDS subdirectory this time,
as you did in most previous How—Tos.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPS 5 directory. Enter the name of your document file
as TEXT\CHAP8 5.RTF.

Next define the external commands and a topic group:
4. Choose Config from the Section menu, then click on the Paste Command
button and select the RegisterRoutine command. Click on OK.

5. Click on the Edit Command button and enter ~mmsystem' in the
DLLName field, "waveOutGetNumDevs' in the FunctionName field,
and “u="'in the Parameters field. Click on OK.

6. Repeat steps 4 and 5 to insert another RegisterRoutine command in the
script, entering - mmsystem.dll' as the DLLName, “sndPlaySound' as
the FunctionName, and ~Su' as the Parameters.

7. Enter the following command in the script, all on one line, then click on
OK:
IfThen(waveOutGetNumbDevs(), “SaveMark("soundOK")')

8. Choose Groups from the Section menu, then click on the New button to
define a group with the default name of Group1. Clear the Searchable
check box, then click on the Exit Script button. Enter the following
command in the script, all on one line:

IfThen(lsMark("sndPlaySound"), “sndPlaySound("chap8 5.wav", 2);



DeleteMark("sndPlaySound")")

9. The completed dialog box looks like Figure 8-8. Click on OK twice to
return to the main Project Editor window, then save the project file.

{ewc vwrht2, TsTextButton, "Figure
8i; 28" [Macro=JI( viewerht. mvb>SecWin', 'fig8 8')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Now you can create the document file:

10. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this topic doesn’t need a context string. Viewer displays the first
topic when a file is loaded unless you specify otherwise. Enter the
following text:

This is the Contents topic.

11. Insert a few blank lines and create a hot spot with text Jump to the
second topic that jumps to context string topic_2.

12. Create a new topic with context string topic_2.

13. Use Topic Editor to add a Topic Groups footnote. Leave the Topic
Browse Sequence and Browse Sequence Number fields blank. Enter
Groupl in the Topic Groups field and click on OK.

14. Enter the following text:

This is the second topic. Click on one of the following controls to hear
some music while you scroll through the topic.

15. Insert a couple of blank lines, and create a hot spot with text Play music
using sndPlaySound. The hot spot should execute the following
command:

IfThen(IsMark("soundOK"), "sndPlaySound( chap8 5.waV',
9);SaveMark( sndPlaySound')")

16. Insert another couple of blank lines, and use Topic Editor to add a
Multimedia command. Select the Sequencer MCI Device and file name
SOUNDS\CHAP8_5.MID, and select the Looping check box. Enter
Multimedia Controller as the caption. Click on OK twice to return to
the document.

17. Insert a couple of blank lines, then enter 30 lines of text saying This is
line 1, This is line 2, through This is line 30.
18. Insert a blank line and enter a line of boldfaced text as follows:

Now use the Contents or Go Back button to return to the Contents
topic.

19. Save your document file, and compile and test as usual.

20. Click on the hot spot in the Contents topic. The second topic should look
like Figure 8-9.



{ewc vwrht2, TsTextButton, "Figure
81y 29" [Macro=JI( viewerht.mvb>SecWin', 'fig8 9')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

21. Click on the hot spot, then scroll through the topic. Click on the Go Back
button to return to the Contents topic.

22. Repeat steps 19 and 20, using the multimedia controller instead of the hot
spot in the second topic. The sound should stop when the controller
scrolls off the window.

How It Works

You define the external commands that determine if the wave file drivers are
installed, and that play wave files, in steps 4 through 6. How—To 8.3 explains
these definitions in detail. In step 7 you use an IfThen command in the
startup Config script to create a mark named soundOK if the drivers are
installed. In step 8 you define the topic group that is explained later in this
section.

You create two topics. The Contents topic exists just so you can leave the
second topic and hear the sound stop without exiting Viewer. The hot spot in
the Contents topic lets you jump to the second topic, where you really do
everything!

The hot spot you create in step 15 first checks for the soundOK mark. If
that’s missing, the hot spot doesn’t do anything. In a real application you
might display a popup here that says Sorry, you can t do that, or just not
display this topic. If the soundOK mark is present, another mark named
sndPlaySound is created and the sound is played. This new mark indicates
that you’ve started the sound, and it needs to be stopped. It’s used shortly.
The flag parameter in the command playing the sound is a new value (9) that
you haven’t used before. This means keep playing the file until you say stop,
and return to Viewer immediately. The codes for these functions are 8 and 1
respectively. You indicate multiple options by adding the values together (9 is
used to represent 8 and 1). The complete set of flag values you can use are
defined in the Comment section below.

The sound stops when you return to the Contents topic, because you
defined a topic group exit script in step 8, and the second topic is the only
one in that group. The exit script checks for the sndPlaySound mark that
indicates you started the sound. If the mark exists, the same sound is played
without repetition. This cancels the previous playing. The mark is then
deleted to indicate that a shut—off is no longer needed.

When you try the multimedia controller, the sound should continue until
the controller scrolls off the window. All of the Viewer ewX commands
execute only while their portion of the topic is visible. This technique would
work without a problem if the controller were located in a non—scrolling
region or a regular pane.

Comment
Did you try exiting Viewer while the sound is being played by the
sndPlaySound command? If not, try it and see what happens. The topic group



exit script does not execute when leaving Viewer, so the sound doesn’t stop.
It actually keeps playing even after Viewer has ended! You can stop it by
playing another wave file, perhaps by using the Windows MPlayer program
or by reexecuting the Viewer application you just ended. The best way to
prevent this in a real application is to modify the Exit button and the Exit
menu item to include commands similar to those you used in the topic group
exit script. If you don’t do this, you could really surprise your users!

The {vfld137438953483}sndPlaySound{v{ld11132555231232} command
{v{ld137438953482} parameters {vfld-9114861779770408960} are defined as
follows:

The sound name may be an entry in the [Sounds] section of your WIN.INI file or
the name of a file. The current directory is searched first, followed by the
'Windows directory, the Windows system directory, the directories listed in the
DOS path environment variable, and the directories mapped in a network. If no
match it found, the SystemDefault sound defined in the WIN.INI file is played. If]
there is no default entry or its sound file can’t be found the function makes no
sound.

The flag values are as follows (remember, use the sum of the values you want):
0—Function does not return until the sound ends.

1—Function returns immediately. Terminate the sound by playing the same
sound or another sound with the flag set to 0.

2—If sound file can’t be found, return silently without playing the default sound.
8—Sound repeats until ended. You must also specify the 1 flag.

16—If a previous sound is currently playing, return immediately without playing
the new sound. Returns value of False.

The command returns True if the sound (or the default) is played, otherwise
False.




8.6 Tips and Tricks

= MIDI files created in the Windows 3.0 file format cause Windows 3.1 to
issue a confusing warning message when they are played. The message
says This file may not play correctly with the
{vfld137438953484 ) default MIDI setup{vfld-9079242005371944960}.
The message box includes a check box used to indicate that this warning
should not be shown thereafter. Such files can be converted to the
Windows 3.1 format by the markmidi program included with Microsoft’s
Visual C++ package and its Software Development Kit (SDK).

= Use only MIDI files that are based on the
{vfld137438953482} General MIDI{v{ld-9223356093936173056}
standard included in Microsoft’s Authoring Guidelines for MIDI Files.
This standard specifies which sound numbers represent which instrument
sounds—for example, sound number 3 is a honky—tonk piano. You
should also be sure that your sound card follows that standard. The
popular cards do follow the standard, but some made for professional
musicians do not. If you play a MIDI file that was written under one
standard on a sound card that uses a different standard, the results are
likely to be painful because the wrong instruments are used. Just imagine
Brahms’ Lullaby played with cymbals and a tuba! Also remember that
your users could have cards that don’t follow the standard.

= Wave files can easily be very large. The portions of section 2.2 that
pertain to sound files should be studied carefully to avoid creating files
that are larger than necessary.

= The Wave File Editor and File Conversion programs described in section
2.4 can be very useful in preparing sound files.

= For an excellent example of the use of sounds, examine Microsoft’s
Multimedia Beethoven.

= Movie files, described in Chapter 9, can include sounds similar to wave
files within the movie. Animation files can cause wave or MIDI files to
be played while the animation is playing.



= Multimedia Options
" Media

" Playback Options |

MCI -...-.,.-',3-.,.-.3.-3,._4.:|i.;. | E Preview [ Looping

Filename: [ Auto-Start

|suunds‘\chap8_1.wav |_I Edit File [T Share As:

™ Store File in Baggage |

" Poszition ' [ Range

" Controller

Track #  Miliseconds
Left Start: | | | | [X Show Controller
Right End: | | | |

Text-Aligned [X Play Entire File

| Layout._. | Edit Sections.__ | E dit Controller._.

| Cancel




Wawe File

b’wﬂ

MIDI File

b‘&lﬂ




= MCI Controller

" Controller Type
Ci Wiewer Standard

" Button Options
[ Play
EI [% Pause
EI [T Play/Pause

EI [T Previous Section
EI [® Scan Backward

EI [ Mext Section
EI [® Scan Forward

Step Size: (1000 Millizeconds

" Menu Options

[T Include Pop-Up Menu
[T Sfmew Magte Moo o

Shder Options

% Show Slider —{——1

[% Allow User to Drag Slider

| Cancel

Help




Custom Controller

b‘ﬁlﬂu—l—" nir




= Edit Command

Edit Command: RegizterR outineg

DLLHame: | “mmzystern. dil

FunctionM ame: | “wavelutFetlumbeys'

Parameterspec: | L=

. | Cancel




Configuration Script:

Std20menus(]
Std20B uttarizl]

RegzterlRouting] ' mvbmp2”, "CoppBmp"’, "w=U55"]
ReqisterRoutine] myvmci2”’, "MCICommand”, "LU555"]
ReqisterR outing myvftzui2”, "SearchDialog®, "15U"]
RegizterRouting] mmeystem.dll, "wavelutGetMumDevs', "u=")
ReqisterR outing mmaystem.dll’, “sndPlaySound’, “5u]

Edit Command._. Paste Command. .




= Edit Command

Edit Command: [fThen

Condition: | wavelutG et umbewvs(]

Command: |"sndF'IaySDund[‘chapB_d.wav', EI]"|

1] .4 | Cancel | Help

Command: Specifies a%iewer command [or commands] to run




III"‘I

Exit Scripl lor Group "Groupl"

Egit Script:
HThanl sak"sndFlayz ourd '], “sndPlays ound 'crapS ooaay', 2 0eleteb ar<] vrd? 2,5 0ound")| |1 | OE I

& -

| Edit Commarsd. I | Pazle Command.._ I | Help I




5 How-To 8.5 Demo
File Edit Bookmark Help
Euntentslﬁu Ea-::kl Hiséury I £ l )

{Ttus 15 the second topic. Click on one of the followmng controls to
| ear some music while yvou scroll through the topic.

la',.r music usine sndFlaysound

Multimedia Controller







Movies and animations can add tremendous value and excitement to your
application. The ability to play a recorded movie with reasonable fidelity is a
recent development. One of the earliest and best—known applications using
movies on a PC is National Geographic’s Mammals. The use of movies made
that package an immediate hit. Animations have been used for several years,
with rapidly increasing quality readily available to the PC user.

The term movies is used to describe moving pictures that were originally
recordings of a live subject. They are usually created with a video camera
and converted to digital form with the aid of special PC boards and software.
Special hardware is not required to play these files, as long as the video
system is adequate. Movies may require displays that support 256 colors.
Movies routinely include recorded sounds that are coordinated with the
picture. Even a fairly small movie picture area requires displaying a very
large number of bits every second. Programmers continue to find ways of
reducing the number of bits that must be redrawn, but this is still a new and
rapidly advancing technology. Movie files are very large—the shortest are
usually more than 1 megabyte, and many are 8 to 10 megabytes long. The
movie files used by Viewer have a file extension of
{vfld137438953482} AVI{vfld11132555231232}, and are based on the
Microsoft Video for Windows standard. Viewer is also capable of playing
some movie files created using software by Macromedia on a Macintosh
computer. These files have an extension of
{vfld137438953482} MMM {v{ld2965619813457592320} and need a special
program to convert them to an acceptable format. It can be difficult to get the
right file format and drivers to support these files.

The term animations is used to describe moving pictures that are created
on a PC, using software by vendors such as Gold Disk and Autodesk. No
special hardware is required to create or play these files, as long as the video
system is adequate. Animations may require displays that support 256 colors.
Animations can be as simple as basic cartoons, or as complex as the
computer—generated images included in recent Hollywood movies.
Animation files can be much smaller than movies, because the animation
files only need to contain instructions describing the objects and their
movements. Animation files may also produce larger picture areas or better
resolution than movies. These files commonly include commands that cause
the driver software to play sound files while the pictures are displayed.

Viewer can display any movie or animation files if suitable Windows
{vfld137438953482} MCI{vfld71919613918576640} drivers are installed.
These drivers must be distributed and installed with your application for the
files to be displayed properly. This chapter demonstrates the techniques for
playing three types of files:

U Microsoft AVI movies, which can be selected as a fully supported
option within the Viewer Topic Editor Multimedia Options dialog
box

U Animations with MCI drivers compatible with Viewer; the
Multimedia Options dialog box allows these file types to be entered,
and the files played properly

U Animations without compatible MCI drivers; although these files
cannot be played by the standard Viewer multimedia controller, they
can be played by other methods



Movies and animations can be played automatically or as a result of user
actions, under the same conditions and using similar methods as for sounds.
The multimedia controller used in Chapter 8 to play sound files is also used
to play movie or animation files that have compatible MCI drivers. Other
techniques can be used to play some animation files that do not have
compatible MCI drivers.



9.1 Howdoll ...
Add a Movie?
Complexity: EASY

Problem
I want to allow the user to play a movie within a topic. I want text to wrap
around the movie area just like it wraps around a picture.

Technique
You insert a standard Viewer multimedia controller into your document file
using Topic Editor.

You create the standard directories, project file, and document file for this
How To. (To review those procedures, refer to sections 3.1 and 3.2.) Note:
Movie files are quite large—over 1 megabyte each. You may need to remove
the files and directories from previous How—Tos if you don’t have enough
disk space available.

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP9 1, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP9 1. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the movie files for this How To from the
VIEWERHT\HOWTOS\CHAP9\CHAP9 1\MOVIES directory on the
CD-ROM to the VIEWERHT\CHAP9 1\MOVIES subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP9 1 directory. Enter the name of your document file
as TEXT\CHAP9_1.RTF and save the project file.

Now you can create the document file:

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t require a context string. Viewer displays
the first topic when a file is loaded unless you specify otherwise.

5. Enter a couple of lines of text at the top of the topic, as follows:

This topic demonstrates the appearance and operation of a standard
Viewer multimedia controller playing an AVI movie file.

6. Insert a couple of blank lines, then activate Topic Editor and select
Multimedia (using ewX with MVMCI2). Click on the Options button to
display the Multimedia Options dialog box.

7. Select MCI Device
{vfld137438953482} AVIVideo{vfld71919613918576640}, select
Filename MOVIES\CHAP9 1.AVI, and select Position Left. Leave the
Store File in Baggage check box unselected. The dialog box should look
like Figure 9—1 after making your changes.



{ewc vwrht2, TsTextButton, "Figure
91;21"[Macro=JI(" viewerht.mvb>SecWin', "fig9 1")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

8. Click on the Layout button to display the MCI Layout dialog box. Enter
President Roosevelt as the Caption Text. Figure 9-2 shows the result.
Click on OK in each dialog box to return to the document.

{ewc vwrht2, TsTextButton, "Figure
91; 22" [Macro=JI(" viewerht.mvb>SecWin', "figd 2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

9. Enter the following text immediately after the command:

Text is being placed both before and after the controller to show the
effect. The controller is left-justified at the beginning of this
paragraph.

10. Save the document file, then compile and test as usual. Figure 9-3 shows
the window while the movie is playing.

{ewc vwrht2, TsTextButton, "Figure
91;, 23" [Macro=JI(" viewerht.mvb>SecWin', "figd 3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

11. The second button (with the arrow) is the Play/Pause button. The movie
begins playing if you click on this button. Play pauses if you click on it
again while the movie is playing. It resumes when you click on the same
button again. The first button (with the box) is the Stop button. If you
click on it while the movie is playing, play stops and the slider returns to
the far left. If you click on the Play/Pause button again the movie plays
from the beginning. The slider shows the current relative position within
the movie while it is playing or paused. It can be dragged to any position
while the movie is paused. Play continues from the point indicated by the
slider when you click on the Play/Pause button again.

How It Works

This How—To uses an embedded window command identical to the one used
to play sounds in Chapter 8. It is also very similar to the corresponding
command used to display pictures in Chapter 4.

The entire operation is performed by the multimedia controller that you
created in steps 6 through 8. The most important parts of the operation are
selecting the MCI Device and selecting the file to be played. After you select
the MCI Device, only files with compatible extensions are displayed.

The Left Position that was selected has the same effect as the
corresponding command when inserting a picture. The text is wrapped
around the picture area without any margin. This is described in detail in



How-To 4.1.

Comment
Movie files should usually be left out of Baggage to reduce overhead, thus
preventing problems during playback.

The size of the picture display area is determined from the movie file. The
file is opened, and the picture size is measured, as soon as the portion of the
topic containing the embedded command is displayed. This ensures that an
area of the right size is reserved, and the text and pictures in the rest of the
topic are positioned accordingly, before you see the topic. If everything had
to be adjusted when you used the Play button, the resulting effect would be
very distracting!



9.2 Howdoll ...
Control the Movie with Custom Buttons?
Complexity: EASY

Problem
I want to let the user play a movie with greater control than the standard
controller provides.

Technique
You insert a Viewer multimedia controller that includes all of the appropriate
buttons.

You create the standard directories, project file, and document file for this
How To. (To review those procedures, refer to sections 3.1 and 3.2.) Note:
movie files are quite large—over 1 megabyte each. You may need to remove
the files and directories from previous How—Tos if you don’t have enough
disk space available.

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP9 2, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP9 2. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the movie files for this How To from the
VIEWERHT\HOWTOS\CHAP9\CHAP9 2\MOVIES directory on the
CD-ROM to the VIEWERHT\CHAP9 2\MOVIES subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP9 2 directory. Enter the name of your document file
as TEXT\CHAP9_2.RTF and save the project file.

Now you can create the document file:

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t require a context string. Viewer displays
the first topic when a file is loaded unless you specify otherwise.

5. Activate Topic Editor and select Multimedia (using ewX with
MVMCI2). Click on the Options button to display the Multimedia
Options dialog box.

6. Select MCI Device AVIVideo and select Filename MOVIES\

CHAP9 _2.AVI. Leave the Position unchanged, and leave the Store File
in Baggage check box unselected.

7. Click on the Layout button and enter President Kennedy as the Caption
Text. Click on OK.

8. Click on the Edit Controller button to display the MCI Controller dialog
box shown in Figure 9—4. Select the Custom Controller Type check box
to enable the other options.

9. Click on the Play check box. Notice that the Play/Pause option is



automatically deselected—you can’t have both at once.

10. Select the Pause, Scan Backward, and Scan Forward check boxes. Notice
that Step Size is automatically activated and a value of 1000 milliseconds
(1 second) inserted when you select the first Scan option. Change this
value to 250 milliseconds so that you can scan in % second increments.
The resulting dialog box should look like Figure 9—4. Click on OK in
each dialog box until you return to the document.

{ewc vwrht2, TsTextButton, "Figure
91;,24"[Macro=JI(" viewerht.mvb>SecWin', "figd 4")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

11. Save the document file, and compile and test as usual.

12. The window should look like Figure 9-5. Try each button, drag the
slider, and see what happens.

{ewc vwrht2, TsTextButton, "Figure
91 25"[Macro=JI("viewerht.mvb>SecWin', "figd 5")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works
This How—To uses the standard Viewer multimedia controller, with all of the
appropriate optional buttons activated. Most of the choices you skipped are
used when a file is divided into sections, as in How—To 9.3.

Throughout this chapter you continue to leave the Store File in Baggage
check box unselected to reduce the disk space required. This is explained in
How—To 9.1.

Comment

The movie area and controller can be positioned in the same way as a picture,
as shown in How—To 9.1. These options, and the options related to the
controller caption, were skipped to simplify the instructions. You should have
no difficulty using these features on your own.



9.3 Howdoll ...

Play a Movie in {vfld137438953482}Sections{vfld3800470531342336}?
Complexity: INTERMEDIATE

Problem
I have a movie file that contains several sections. I want the user to be able to
play the entire file or individual sections as desired.

Technique
You use the Viewer multimedia controller from the previous How—Tos with
additional user controls, and add section definitions.

You create the standard directories, project file, and document file for this
How To. (To review those procedures, refer to sections 3.1 and 3.2.) Note:
Movie files are quite large—over 1 megabyte each. You may need to remove
the files and directories from previous How—Tos if you don’t have enough
disk space available.

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP9 3, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP9 3. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the movie files for this How To from the
VIEWERHT\HOWTOS\CHAPO9\CHAP9 3\MOVIES directory on the
CD-ROM to the VIEWERHT\CHAP9 3\MOVIES subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP9 3 directory. Enter the name of your document file
as TEXT\CHAP9_3.RTF and save the project file.

Now you can create the document file:

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t require a context string. Viewer displays
the first topic when a file is loaded unless you specify otherwise.

5. Activate Topic Editor and select Multimedia (using ewX with
MVMCI2). Click on the Options button to display the Multimedia
Options dialog box.

6. Select MCI Device AVIVideo and select Filename MOVIES\

CHAP9 3.AVI. Leave the Position unchanged, and leave the Store File
in Baggage check box unselected.

7. Click on the Layout button and enter Martin Luther King as the Caption
Text. Click on OK.

8. Click on the Edit Sections button to display the MCI Sections dialog box.

9. Leave the Defined Within the Embedded Pane radio button at the top of
the dialog box selected.



10. Click on the New button to define a new movie section. Enter My
Slogan as the Section Name, and leave 0 in the Section Begins at
Milliseconds field. Leave the Pause at Beginning of Section and Display
Tick Mark on Slider check boxes checked.

11. Repeat step 10, entering The Promised Land in the Section Name field
and 25000 in the Milliseconds field. The resulting dialog box should
look like Figure 9—-6. Click on OK.

{ewc vwrht2, TsTextButton, "Figure
91;,26"[Macro=JI(" viewerht.mvb>SecWin', "fig9 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

12. Click on the Edit Controller button to display the MCI Controller dialog
box. Select the Custom Controller Type check box to enable the other
options.

13. Click on the Play check box. Notice that the Play/Pause option is
automatically deselected—you can’t have both at once.

14. Select the Pause, Scan Backward, Scan Forward, Previous Section, and
Next Section check boxes. Notice that Step Size is automatically
activated and a value of 1000 milliseconds (1 second) inserted when you
select the first Scan option. Change this value to 250 milliseconds so that
you can scan in “4—second increments.

15. Select the Include {vfld137438953482} Pop—Up Menu{vfld-
8970462913399619584} check box under the Menu Options section,
then click on OK in each dialog box until you return to the document.

16. Save the document file, and compile and test as usual.

17. Point to the Pop—Up Menu icon at the left side of the control, then hold
down the left mouse button. This is not a “sticky” menu—ryou must click
and drag to choose an item. The window should look like Figure 9—7. Try
each button and menu entry and see what happens.

{ewc vwrht2, TsTextButton, "Figure
91; 7" [Macro=JI(" viewerht.mvb>SecWin', "figd 7")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The most important part of this How—To is defining the movie sections in
steps 8 through 11. The Section Name entries are used to build the popup
menu, and the time entries determine the beginning of each section. The
default section names could have been used if the menu was not requested.
The check box labeled Display Tick Mark on Slider caused a mark to be
placed below the slider bar at the beginning of each section.

Two new buttons were requested—Previous Section and Next Section.
These buttons provide an alternative means, besides the menu, for switching
between sections. The menu, or the buttons, or both, must be provided.
Otherwise your section definitions are meaningless because the user cannot



switch between sections.

The menu disappears as soon as the mouse button is released. Options
must be selected by dragging the mouse pointer to the desired entry before
releasing.

The Pause menu entry is a toggled value. If it is selected, play
automatically pauses at the end of each section.

Comment
You can store section definitions in a separate text file instead of defining
them within the embedded command. The separate file is better if you have
many sections, if you want to change the section definitions, or if you create
the definitions before the topic is created. This section—definitions file is
usually stored in Baggage for the same reasons as other files. The format of
this file is described in the Viewer documentation.

To get the beginning times of the sections, if you cannot control them
when the movie file is created, run the
{vfld137438953482} MPlayer{v{ld280933810831360} utility and load the
file to be played. Begin playing the file, then pause when the desired scene
appears. You can use the small left and right arrows that appear to the right of
the slider to move in small increments to find the desired spot. Note the time
shown in the lower—right corner of the window. The time displayed in
seconds must be multiplied by 1,000 to convert to the milliseconds required
by Topic Editor.



94 Howdoll ...

Play a Movie Automatically?
Complexity: INTERMEDIATE

Problem
I want to display a movie automatically when a topic is displayed.

Technique

Two different techniques are demonstrated. One uses the same multimedia
controller as in the previous How—Tos in this chapter. This technique lets you
decide if the user can control the movie through the buttons demonstrated in
previous How—Tos. The other technique executes a separate program through
a topic entry command to play the specified movie. This program provides
buttons and a slider that are extremely similar to the standard multimedia
controller demonstrated in How—To 9.1.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.) Note:
Movie files are quite large—over 1 megabyte each. You may need to remove
the files and directories from previous How—Tos if you don’t have enough
disk space available.

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP9 4, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP9 4. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the movie files for this How To from the
VIEWERHT\HOWTOS\CHAPO\CHAP9_4\MOVIES directory on the
CD-ROM to the VIEWERHT\CHAP9 4\MOVIES subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP9 4 directory. Enter the name of your document file
as TEXT\CHAP9_4.RTF and save the project file.

4. Use Project Editor to start Word and create your document, and create a
new topic with context string topic_1. Be sure to delete the page break
that is created before your topic.

Now create the topic entry command:

5. Use Topic Editor to define a topic entry command, and click on the Paste
Command button. Select the
{vfld137438953483 } ExecProgram {vfld1477325272146509824}
command and click on OK.

6. Click on the Edit Command button, then enter
"{vfld137438953483}MPlayer{vfld-9223357193447800832}
/play /close movies\\chap9_4.avi' in the CommandLine field, and
select 0 — Normal from the pull-down list for the ProgramState field.
Click on OK twice to return to the document, then press [CTRL]—



[SPACE] to restore your normal

{vfld137438953484} character format{vfld-9223348397354778624}.
Topic Editor does not restore the normal format after this command. If
you don’t press [CTRL]-[SPACE] your following text looks like footnote
codes!

7. Insert a few blank lines, and insert a hot spot with the text Go to second
topic and context string topic_2.

Next create the embedded multimedia—controller command:
8. Create a new topic with context string topic_2. Press [CTRL]-[SPACE]
to restore your normal character format again, as in step 6.

9. Activate Topic Editor and select Multimedia (using ewX with
MVMCI2). Click on the Options button to display the Multimedia
Options dialog box.

10. Select MCI Device AVIVideo and select Filename MOVIES\
CHAP9 4.AVI. Select the {vfld137438953482} Auto—
Start{vfld280933810831360} check box. Leave the Position unchanged,
and leave the Store File in Baggage check box unselected. Click on the
Show Controller check box to deselect it.

11. Click on the Layout button and enter Merging Traffic as the Caption
Text. Click on OK in each dialog box to return to the document.

12. Insert a couple of blank lines and insert a hot spot with the text Go to
first topic and context string topic_1.

13. Save the document file, and compile and test as usual.

14. Use the hot spots to jump between the two topics. Figure 9—8 shows the
MPlayer window in the first topic.

{ewc vwrht2, TsTextButton, "Figure
91, 28"[Macro=JI("viewerht. mvb>SecWin', "figd 8'")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

15. Figure 9-9 shows how the movie is displayed in the second topic.

{ewc vwrht2, TsTextButton, "Figure
91;,29"[Macro=JI(" viewerht.mvb>SecWin', "figd 9")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

16. Compare the effects of the two techniques. While viewing the second
topic, move the mouse pointer onto the picture. It changes to a pointing
finger, just as it does over a hot spot. Click on the picture and see what
happens.

How It Works
The ExecProgram command you define as a topic entry command in steps 5
and 6 runs the Microsoft Media Player (MPlayer) program shown in Figure



9-8. The /play and /close options cause the program to begin playing the
specified movie automatically, and to exit the program when the movie is
finished. A double {vfld137438953482}backslash{vfld13331578486784} (\\)
is needed in the file name because of RTF—file conventions. A single
backslash begins certain RTF control codes, and a double
{vfld137438953484} backslash{v{ld8142789060096688128} shows that you
want a backslash character in your text.

The multimedia controller in this How—To is very similar to those in
previous sections. This time, you select the Auto—Start check box, which
begins playing the movie immediately. You also deselect the Show Controller
check box, which eliminates the control buttons and slider. The result is
shown in Figure 9-9. Other features, such as custom buttons and sections,
could also be used if desired. This requires leaving the Show Controller
option checked.

When the controller is not shown, the picture image serves as a Play/Pause
button. Clicking on the picture while the movie is playing causes it to pause,
and clicking on it again causes it to resume.

Comment

The ExecProgram command returns control to Viewer immediately, which
lets the topic be displayed while the movie is being played. The delay before
the hot spot appears is the time Windows needs to load the MPlayer program.
This technique takes longer to begin playing than the multimedia controller
because of the additional overhead of executing a separate program.

The ExecProgram technique can be used anywhere that a Viewer
command can be executed—in a hot spot, a button, or topic entry. The
embedded command can only be used within a topic. How—To 9.5
demonstrates using a hot spot to display a topic containing an embedded
command.

If you use a hidden controller, make sure your users will know that they
can click on the picture image. This isn’t obvious!



9.5 Howdol ...
Play a Movie in a Popup Window?
Complexity: INTERMEDIATE

Problem
I want to play a movie in a popup window when the user clicks on a hot spot.

Technique

You do this two different ways. The first creates a standard popup hot spot
that displays a topic containing an embedded multimedia controller like the
one used in How—To 9.4. The second executes a series of external MCI
commands directly within the hot spot.

You create the standard directories, project file, and document file for this
How To. (To review those procedures, refer to sections 3.1 and 3.2.) Note:
Movie files are quite large—over 1 megabyte each. You may need to remove
the files and directories from previous How—Tos if you don’t have enough
disk space available.

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP9 5, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP9 5. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the movie files for this How To from the
VIEWERHT\HOWTOS\CHAP9\CHAP9 5\MOVIES directory on the
CD-ROM to the VIEWERHT\CHAP9 5\MOVIES subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP9 5 directory. Enter the name of your document file
as TEXT\CHAP9_5.RTF.

Next define the external MCI command:

4. Choose Config from the Section menu and paste a
{vfld137438953483} RegisterRoutine {vfld1477325272146509824}
command into the startup script.

5. Edit the RegisterRoutine command and enter *mmsystem' in the
DLLName field, ~ {vfld137438953483}mciSendString{vfld-
9223357193447800832}' in the FunctionName field, and ~U=SSuu'
in the Parameters field. Click on OK in each dialog box, then save the
project file.

Now you can create the document file:

6. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t require a context string. Viewer displays
the first topic when a file is loaded unless you specify otherwise.

7. Insert a few blank lines, and enter the text Pop up a movie.



8. Select the text you just entered and activate Topic Editor. Click on OK to
accept the Hot Spot (text) entry that is selected.

9.  Click on the Popup radio button under Hot Spot Type.

10. Select the Jump to... element, then enter the_movie as the context
string. Click on OK.

11. Insert a couple of blank lines, then enter the text Pop up a movie
differently. Select that text and create another popup hot spot as you did in
steps 8 and 9.

12.  Click on the Hidden Text is Command(s) radio button, then type in the
following commands exactly as shown. Note the single space between the
second pair of quotation marks. Enter each command on a separate line.
{v{ld2305865549202063371} mciSendString{vfld296421243857403904
0}("open movies\\chap9 5.avi alias movie"," ",0,0)

mciSendString("play movie wait"," *,0,0)
mciSendString("close movie"," ",0,0)

13. Insert a blank line, then create a new topic with context string
the_movie.

14. Use Topic Editor to insert a Multimedia command, and click on the
Options button.

15. Select MCI Device AVIVideo, and file name MOVIES\CHAP9 5.AVI.
Select the Auto—Start check box, and deselect the Show Controller check
box.

16. Click on the Layout button, and enter Motorcycle as the Caption Text.
Click on OK in each dialog box to return to the document.

17. Save the document file, and compile and test as usual.
18. The first popup window should look like Figure 9—-10.

{ewc vwrht2, TsTextButton, "Figure
91;,210"[Macro=JI( viewerht. mvb>SecWin', 'fig9 10")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

19. Drag the left edge of your Viewer window to the right before clicking on
the second hot spot. The result should look like Figure 9—11.

{ewc vwrht2, TsTextButton, "Figure
91 211"[Macro=JI(" viewerht.mvb>SecWin', "figd 11")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The first hot spot is a standard popup hot spot, created in steps 7 through 10,
that displays a topic containing a multimedia controller. That topic and
controller are defined in steps 13 through 16. The controller starts playing
automatically, and doesn’t have any control buttons.

The second hot spot is also defined as a popup so that its appearance is
consistent with the resulting action. It would work the same way even if it
were formatted as a jump. The important part of this definition is that this hot
spot executes three MCI commands. The first command opens the movie file
and assigns an alias (movie) to be used in the following commands. The



second command plays the movie file and waits until it is done before
returning to Viewer to execute the next command. The last command closes
the file. The second parameter for the mciSendString command is always a
single space enclosed in quotation marks (" "). The third and fourth
parameters are always zero. These parameters provide options that are
valuable when the command is called from a C or Visual Basic program, but
cannot be used when it is called from a Viewer application. The MCI
command is an external command, so it is defined in a RegisterRoutine
command in steps 4 and 5.

The wait option with the MCI play command is critical. If it is missing, the
third command executes immediately, closing the file before it even begins to
play. You probably noticed that you couldn’t do anything until the file
finished playing.

Comment
A double backslash (\\) is needed in the file name because of RTF—file
conventions. A single backslash begins certain RTF control codes, and a
double backslash shows that you want a backslash character in your text.
The MCI commands create a window that is positioned near the top left
corner of the screen, even if that is outside the Viewer window. The window
position can be specified by executing another MCI command between the
open and play commands. This command would read put movie destination
at X1 Y1 X2 Y2, where X1 and Y1 are the coordinates of the top left corner of
the window, and X2 and Y2 are the width and height of the window. All
measurements are in pixels relative to the top—left corner of the display. This
command is demonstrated in How—To 9.7.



9.6 Howdol ...
Play a Compatible Animation File?
Complexity: EASY

Problem

I want to play an animation file created by Gold Disk’s
vld2305857852620668938} Animation Works Interactive {vfld72057052872
048640} in my application.

Technique
Gold Disk provides MCI drivers that are compatible with Viewer, so you can
use the standard Viewer multimedia controller.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP9 6, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP9 6. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the movie files for this How To from the
VIEWERHT\HOWTOS\CHAPO\CHAP9 6\MOVIES directory on the
CD-ROM to the VIEWERHT\CHAP9 6\MOVIES subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP9_6 directory. Enter the name of your document file
as TEXT\CHAP9 6.RTF.

Now you can create the document file:

4. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t require a context string. Viewer displays
the first topic when a file is loaded unless you specify otherwise.

5. Use Topic Editor to insert a Multimedia command, and click on the
Options button.

6. Enter {vfld2305865549202063370} GDAnim{vfld-
9079242005371944960} as the MCI Device, and select file name
MOVIES\CHAP9 6. AWM. Note that you have to type in the device type
—it is not included in the pull-down list.

7. Click on the Layout button, and enter Train Switch as the Caption Text.
Click on OK in each dialog box to return to the document.

8. Save the document, and compile and test as usual. The window should
look like Figure 9-12.

{ewc vwrht2, TsTextButton, "Figure
91 212" [Macro=JI(" viewerht.mvb>SecWin', 'fig9 12")] [Font="Arial"



/S12/B4] /W100 /H40/B1/D2}

9. Click on the button when it appears, and see the effect.

How It Works

The multimedia controller you used this time is the same that you used in the
previous How—Tos in this chapter. The important difference in this case was
forcing an MCI Device name that is not part of the standard Windows 3.1
installation. The device name used must match an entry in the [MCI] section
of the SYSTEM.INI file or the command fails. These entries are created as
part of installing the appropriate driver software. Related entries are also in
the WINL.INI files.

Comment

Note that the animation file used in this demonstration includes its own
pauses with a button to resume play. This uses a feature of the program that
created the file, instead of Viewer’s controls. Animation software includes
many powerful capabilities such as this that help make the image more
appealing or informative. This particular file demonstrates the value of
animations in training applications.

If you include animation files in your application that require drivers that
aren’t installed with Windows or sound cards, you must assure that the
necessary files and INI file entries are present on your users’ systems. This
requires including those drivers in your installation package and including
instructions that update the INI files in your Setup script. This is described in
appendix A. The [MCI] section of my
{vfld137438953482} SYSTEM.INI{v{ld2850492484943872} file contains
the following:

{v{ld137438953482} Sequencer{v{ld2850492484943872 }=mciseq.drv

{v{ld137438953482} WaveAudio {vfld-

9042665642972413952 }=mciwave.drv 7

Mixer=mcimixer.drv

{vfld137438953482} AVIVideo {v{ld2850492484943872 } =mciavi.drv

{vfld137438953482} CDAudio{v{ld2850492484943872 }=mcicda.drv

{vfld137438953482} GDAnim{v{ld2850492484943872}=mciawi.drv

{vfld137438953482} AAAnim{vfld-9151452422936199168 }=mciaap.drv



9.7 Howdol ...
Play an Incompatible Animation File?
Complexity: DIFFICULT

Problem
I want to play an animation file in my application, but its MCI driver is not
compatible with Viewer.

Technique
This How—To demonstrates how to play an animation file created by
AutoDesk {vfld137438953482} Animator Pro{vfld13331578486784}. The
{vfld137438953484} AutoDesk {vfld-7998112004399169536} MCI driver
has a bug that makes it incompatible with the Viewer MVMCI2 command.
You use two techniques to play this file. The first executes external MCI
commands directly, since there is an MCI driver for this package. The second
executes the Microsoft Media Player (MPlayer) program to play the file.
You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP9 7, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP9 7. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy the movie files for this How To from the
VIEWERHT\HOWTOS\CHAPO\CHAP9 7\MOVIES directory on the
CD-ROM to the VIEWERHT\CHAP9 7\MOVIES subdirectory on your
hard drive.

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAP9 7 directory. Enter the name of your document file
as TEXT\CHAP9_7.RTF.

Next define the external MCI command:
4. Choose Config from the Section menu and paste a RegisterRoutine
command into the startup script.

5. Edit the RegisterRoutine command and enter “mmsystem' in the
DLLName field, "'mciSendString' in the FunctionName field, and
"U=SSuu' in the Parameters field. Click on OK in each dialog box, then
save the project file.

Now you can create the document file:

6. Use Project Editor to start Word and create your document. You don’t
need to define a topic—the beginning of the file is always a new topic,
and this demonstration doesn’t require a context string. Viewer displays
the first topic when a file is loaded unless you specify otherwise.

7. Insert a few blank lines, and enter text Play a movie using MCI
commands.



8. Select the text you just entered and invoke Topic Editor. Click on OK to
accept the Hot Spot (text) entry that is selected.

9.  Select the Jump to... element, then click on the Hidden Text is
Command(s) radio button.

10. Type in the followin% commands exactly as shown. Note the single space
between the second pair of quotation marks. Enter each command on a
separate line.

{Vﬂd23058655492020633712mciSendString{vﬂd-
?%45)521606949175296} "open movies\\chap9 _7.flc alias movie","
mciSendString("put movie destination at 15 15 500 500"," ",0,0)
mciSendString("play movie wait"," ",0,0)

mciSendString("close movie"," ",0,0)

11. The completed dialog box looks like Figure 9—13. Click on OK to return
to the document.

{ewc vwrht2, TsTextButton, "Figure
91;,213"[Macro=JI( viewerht. mvb>SecWin', 'fig9 13")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

12. Insert a few blank lines, then enter text Play a movie using MPlayer.

13. Repeat steps 6 and 7 to create a hot spot that executes a command using
this text.

14. Paste in an ExecProgram command, then click on the Edit Command
button. Enter the following in the CommandLine field:

"{vfld137438953483}MPlayer{vfld2306123943024525312} /play
/close movies\\chap9_7.fli'

15. Select 0 — Normal from the pull-down list for the ProgramState field.
Click on OK in each dialog box to return to the document.

16. Save the document, and compile and test as usual. The window should
look like Figure 9—14 after clicking on the first hot spot.

{ewc vwrht2, TsTextButton, "Figure
91;214"[Macro=JI( viewerht.mvb>SecWin', 'fig9 14")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

17. The results of clicking on the second hot spot should look like Figure 9—
15.

{ewc vwrht2, TsTextButton, "Figure
9i;'15"[Macro=JI("viewerht. mvb>SecWin', 'fig9 15")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works
The MCI commands used in the first hot spot are the same as in How—To 9.5,



with the addition of positioning the picture window. The first command
opens the movie file and assigns an alias (movie) to be used in the following
commands. The second command plays the file and waits until it is done
before returning to Viewer to execute the next command. The last command
closes the file. The second parameter for the mciSendString command is
always a single space enclosed in quotation marks (" "). The third and fourth
parameters are always zero. These parameters provide options that are
valuable when the command is called from a C or Visual Basic program, but
cannot be used when it is called from a Viewer application. The MCI
command is an external command, so it was defined in a RegisterRoutine
command in steps 4 and 5.

The window position is specified by executing the put MCI command
between the open and play commands. This command creates the window 25
pixels down and 25 pixels to the right of the upper left corner of the display,
and makes the window 150 pixels wide and 150 pixels high.

The wait option with the MCI play command is critical. If it is missing, the
next command executes immediately, closing the file before it even begins to
play. You probably noticed that you couldn’t do anything until the file
finished playing.

The ExecProgram command you defined in step 12 causes the Microsoft
Media Player (MPlayer) program to be run. The /play and /close options
cause the program to begin playing the specified movie automatically, and to
exit the program when the movie is finished. A double backslash (\\) is
needed in the file name because of RTF—file conventions. A single backslash
begins certain RTF control codes, and a double backslash shows that the
backslash character is desired.

Comment
The ExecProgram command returns control to Viewer immediately, which
lets the topic be displayed while the movie is being played. The delay before
the hot spot appears is the time Windows needs to load the MPlayer program.
This technique takes longer to begin playing than the multimedia controller
because of the additional overhead of executing a separate program.

The only way to use AutoDesk
{vfld137438953482} FLI{v{ld11132555231232} and
{vfld137438953482} FLC{v{ld7363103374608171008} animation files is by
converting them to AVI files with the VidEdit program included in Microsoft
Video for Windows.



9.8 Tips and Tricks

= Movies should only be used if you need a video of an actual scene, or
closely coordinated sound and pictures. Whenever possible, choose the
higher—resolution display of animations.

= Continuing improvements in video technology should make high—quality
movies with large pictures practical within a few years.

= Animation packages have become extremely powerful and easy to use.
Some artistic talent is necessary to develop files containing original
moving objects (known as actors). If the actors provided with a package
are adequate for your needs, very little artistic talent is necessary to
produce an attractive result.

= Some animation software packages require video systems capable of
displaying 256 simultaneous colors, while others can work on either 16—
or 256—color systems. Digital movies require 256 colors.

= The external commands used in this book, such as mciSendString, are
documented in packages designed for programmers, such as Microsoft’s
Software Development Kit and many compilers sold by Microsoft,
Borland, and others. This documentation can be very difficult for
nonprogrammers to understand. Information and assistance are also
available from other sources, as described in appendix C.

= Sounds that are included in animation files usually cannot be closely
coordinated with the picture. If close synchronization is required, the file
must be converted to an AVI movie file before adding the sounds.



= Multimedia Options
" Media

" Playback Options |

MClI -;-.;-.,.-'|'-.,.-'i.;|.3.;. | E - [ Looping

Filename: [ Auto-Start

|mu:uvies"u:hapEl_'I.avi |_I Edit File [T Share As:

[ Store File in Baggage |

" Poszition ' [ Range

" Controller

Track #  Milizeconds
Left Start: | | | | [X Show Controller

Right End: | | | |

Text-Aligned [X Play Entire File

| Layout._. | Edit Sections.__ | E dit Controller._.

| Cancel




= MCI Layout

Caption:

Prezident Roozewvelt

" Caption Algnment . [Image Size

Height: I:I
width: [ |

[¥ Put Frame Around Image

. | Cancel | Help




File Edit Bookmark Help

>

15 topic demonstrates the appearance and operation of a
andard WViewer multime dia controller playing an AV mowe

[Text 1z bemg placed both before
atd after the controller to show the
effect The controller is left-ustified
at the beginmng of this paragraph.

President Roosevelt




= MCI Controller

" Controller Type
Ci Wiewer Standard

" Button Options
[ Play
EI [% Pause
EI [T Play/Pause

EI [T Previous Section
EI [® Scan Backward

EI [ Mext Section
EI [® Scan Forward

Step Size: Millizeconds

" Menu Options

[T Include Pop-Up Menu
[T Sfmew Magte Moo o

Shder Options

% Show Slider —{——1

[% Allow User to Drag Slider

| Cancel

Help




Edit Bookmark Help




= MCI Sections

Uze Section Information
@ Defined Within the Embedded Pane

) From a Text File: | U

[T Srose Soudion Tewt Fie in Baugens

iThe Promized Land S LTS
|The Promized Land

Section Begins Al:

Track #: I:I Millizeconds:

[® Pauze at Beginning of Section

™ Dizplay Tick Mark On Slider

Cancel Help




File Edit Bookmark Help

£ e

Martin Luther King
L g |
| o ot o | 0 | ]
My Slogan B

Pauses




How-To 9.4 Demo

File

Edit

Bookmark Help




How-To 9.4 Demo
File Edit Bookmark Help

Merging Traffic

o to first topic




—| Huw-Tu 9.5 Den | - ]3]
kile LEdt Hookmark Help

Enntenlsl%&ia@ﬁ&z&;l Hisluﬂll <5 | i




Pritt b anager

FI

Manager

How-To 9.5 Demo

File

Edit Bookmark

Help

E?éza:kl Hiséuly I 4.4 I 22




—

Huw-Tu 9.6 Demu

kile LEdt Hookmark Help

Contenls | Go Back | Hislory

<4 #F

Click Here To Continue




Yiewer Elements:

Yiewer Topic Editor - CHAPI _7.MVYP

‘Command ‘moisends

briraf

AN Mo

Hidden Textiz: () Jump @ Command(z]

Commands [one per line):

miziSendStringl open moviezs\\chap3_7.fo al
mciSendStringlput movie destination at 15 1!
mziSendStringl"play movie wait™," "*,0,0]

.+
+

« |

-

| Edit Command. ..

Pazte Command...

"Hot Spot Formatting
! Hone

@ Underlined and Colored

114

Cancel |

Help

About___




moviesAichapd 7 .flc

g

’ __-- -...::__:_...
f‘
o j'
/ [




|

Huw-Tu 9.7 Demu

kile LEdt Hookmark Help

Contents |Go Back | History | <2 | _

Flax a move nang BT conunards

.=.| T

imuevicsichiapd 7.0

Flax a mov.e nsing, @:







Viewer can do a lot for you without any programming, but sometimes it’s
useful or even necessary to write programs that work with Viewer. For

example:
p
i

You may need some functions that aren’t available in Viewer.
You may want to use Viewer to provide the Help function for an
application, which means your application must tell Viewer
which topic to display.

You may want to have a program and a Viewer application
working in a coordinated effort to provide the desired services
for your users.

There are many opportunities for combining custom programs with Viewer.
Programs can

u
i

i

Issue any Viewer commands, including jumps and popups

Be executed as external commands (in a DLL) by a Viewer
application

Create new embedded pane functions such as buttons, list boxes,
text input, or reporting the percentage of right answers (score)
the user has in a series of multiple—choice questions

Provide a custom Search dialog box and functions that include
added capabilities, such as searching across multiple Viewer
MVB files

Provide custom word breaks in searching; this could allow
phonetic searching, or the use of unique data types

Read files stored in Baggage, for any purpose; you could, for
example, let users select a document or spreadsheet through a
Viewer application, then extract it as a separate file for input to
another program

Perform special operations when the user takes certain actions,
such as displaying a new topic, scrolling, or closing the
application; the operations could include keeping a second
program coordinated with the Viewer application, or assuring
that sound files have stopped playing

The possible programs can be combined in many ways. For example, you
can write a program that detects when the user minimizes the Viewer window
and then issues a command telling Viewer to restore the window to its normal

size.

Visual Basic ({vfld137438953482} VB {vfld11132555231232}) does not
support writing external commands ({vfld137438953482} DLL {vfld-
9223091103043944448}s), which are needed to take advantage of many of
these opportunities. Many of the programs you might want must be written in
C or Pascal. VB programs are able to issue Viewer commands, and one of the
files supplied on the enclosed CD disk (MV.VBX) makes it possible for a VB
program to accept notification of Viewer events such as jumps and popups.
How—To 10.2 demonstrates the capabilities of this VB enhancement.

One of the most powerful extension capabilities in Viewer is the ability to
execute external commands. Chapters 8 and 9 demonstrate this, by using
external commands to play sounds, movies, and animations. For example, a
Windows API function is executed to determine if the computer can play
sounds. The support for external commands makes it possible for Viewer to



do nearly anything that you can write a program to do!

Custom—written
{vfld137438953482}embedded pane {vfld7232780460391137280}
commands let you enhance the user interface while maintaining the
appearance of a seamless whole. Viewer comes with a sample program that
provides a list box. The CD-ROM enclosed with this book includes an
embedded pane command program that let you use your own buttons
anywhere in any pane of a main or secondary window. Another program on
the disk lets your Viewer application keep track of the user’s score on
multiple—choice questions, and display the current score in an embedded
window. Many commercial Viewer applications use similar functions to
provide user capabilities that can’t be performed by standard Viewer
commands.

The power of these programming capabilities is best understood by
considering the Viewer extensions included on the enclosed disk, and the
descriptions in Chapter 1 of advanced Viewer applications and other Viewer
extensions.

The programs that must be written in C, rather than Visual Basic, are
relatively difficult to write. Appendixes C and D explain how to locate
experienced programmers to assist you.



10.1 Howdoll ...

Control Viewer from an Application?
Complexity: INTERMEDIATE

Problem

I want to use Viewer instead of WinHelp to provide context—sensitive help
for my Visual Basic program when the user presses [F1]. The Viewer window
should be alongside my program’s window instead of overlapping.

Technique
This How—To demonstrates the techniques for controlling a Viewer
application from within a VB program. It positions the Viewer window
alongside the VB program’s window, and instructs Viewer to display selected
topics when the user requests context—sensitive help. The user can close the
Viewer window, and the program reopens it the next time it’s needed.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and create the Viewer files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP10 1, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP10 1. Create these
four directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPI10 1 directory. Enter the name of your document file
as TEXT\CHAP10_1.RTF.

3. Choose Config from the Section menu, and delete all of the commands in
the default startup script by selecting them with the mouse and pressing
[DEL]. Click on OK.

4. Choose Window Definitions from the Sections menu. Enter the value
512 in the Top, Left, Height and Width fields, then click on the
Properties button to display the Window Properties dialog box.

5. Enter Demo Help in the Window Caption field. Double—click on the
System menu box at the upper—left corner of the window to close this
dialog box and return to the Window Definitions dialog box. Click on
OK to return to the main Project Editor window.

6. Use Project Editor to start Word and create your document, and create a
new topic with context string textl.

7. Enter the following text:

This is the help screen for the first text box.

It could easily contain pictures, sounds, movies, or animations, just
like any other Viewer topic.

8. Create a new topic with context string text2, and enter the text:
This is the help screen for the second text box.

It could easily contain pictures, sounds, movies, or animations, just
like any other Viewer topic.



9. Create a new topic with context string button, and enter the text:
This is the help screen for the Exit button.

It could easily contain pictures, sounds, movies, or animations, just
like any other Viewer topic.

10. Save the document, and compile as usual.

Next create the VB program:

11. Create a new project called CHAP10_1.MAK, and save it in the \
VIEWERHT\CHAP10 1 subdirectory. Create a new form, filling the left
half of the screen, and create the objects and properties listed in Table
10-1. The position of the objects is not critical. Save it as
HELPFORM.FRM. The screen looks like Figure 10-1.

Table 10—1. Application Help Project Objects and Properties

Object Property Setting
Form FormName HelpForm
Caption Viewer Help Demo
MaxButton 0 (False)
Text Box Name Textl
Height 495
Left 720
Text First Text Box
Top 480
Width 4935
Text Box Name Text2
Height 495
Left 720
Text Second Text Box
Top 1680
Width 4935
Button Name Command1
Caption Exit
Height 495
Left 1560
Top 3960
Width 1215

{ewc vwrht2, TsTextButton, "Figure
101 % 1"[Macro=JI(" viewerht.mvb>SecWin', figl0 1')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

12. Create a new module, enter the following code, and save it as
HELPFORM.BAS.
' Key Codes



Global Const KEY F1 = &H70

' ScaleMode
Global Const TWIPS = 1
Global Const PIXELS = 3

' Viewer Constants
Global Const cmdoptNONE = 0
Global Const cmdoptHIDE = 1

13. Enter the following code in the Declarations section of your form to
define the Viewer API functions and common data fields you use. Enter
each Declare statement on a single line.

Dim ViewerX, ViewerY, ViewerWidth, ViewerHeight As Integer

Declare Function
{vfld137438953483}VwrFromMVB{vfld3131967461654528} Lib
"mvapi2.dll" (ByVal szMVB As String) As Integer

Declare Function
{vfld137438953483}VwrCommand{vfld3131967461654528} Lib
"mvapi2.dll" (ByVal iVwr As Integer, ByVal szMVB As String, ByVal
szMacro As String, ByVal iCmdOptions As Integer) As Integer
Declare Function
{vfld137438953483}VwrQuit{vfld280933810831360} Lib
"mvapi2.dll" (ByVal iVwr As Integer) As Integer

14. Enter the following code in the Command1_Click event subroutine. This
terminates Viewer, if it is still running, and ends the VB program.
Sub Commandl _Click ()

' end Viewer
MVB$ = "CHAP10_1.MVB" + Chr$(0)
vwrViewer% = VwrFromMVB(MVB$)
If vwrViewer% > 0 Then
Eei(:j%l)f= VwrQuit(vwrViewer%)
n

' end VB program
Unload HelpForm
End

End Sub

15. Enter the following code in the Commandl KeyDown,
Textl KeyDown, and Text2 KeyDown event subroutines to handle a
user’s request for help (by pressing [F1]).

Sub Commandl_KeyDown (KeyCode As Integer, Shift As Integer)
If KeyCode = KEY F1 Then
ContextHelp ("button")
End If
End Sub

Sub Textl KeyDown (KeyCode As Integer, Shift As Integer)
If KeyCode = KEY F1 Then
ContextHelp ("text1l")
End If
End Sub

Sub Text2 KeyDown (KeyCode As Integer, Shift As Integer)
If KeyCode = KEY F1 Then
ontextHelp ("text2")
End If



End Sub

16. Enter the following code in the Form_Load event subroutine. This
positions the VB program’s window to occupy the left half of the screen,
and calculates the position that the Viewer window should occupy.

Sub Form_Load ()

' set this window's size & position
Width = Screen.Width / 2
Height = Screen.Height
Top=0
Left =0

' calculate Viewer windows's size & position, in pixels
ScaleMode = TWIPS
TwipHeight = ScaleHeight
TwipWidth = ScaleWidt
ScaleMode = PIXELS
PixelHeight = ScaleHeight
PixelWidth = ScaleWidt

ViewerX = ((Width * PixelWidth) / TwipWidth)
ViewerY =0

ViewerWidth = ViewerX - 1

ViewerHeight = ((Height * PixelHeight) / TwipHeight)

End Sub

17. Enter the following code as a new subroutine. This issues the Viewer API
calls to load Viewer and display the proper topic.

Sub ContextHelp (Context As String)
' prepare strings

MVB$ = "CHAP10_1.MVB"

Q$ = Chr$(34)

' create Viewer PositionTopic command
PosCmd$ = "PositionTopic(" + Q$ + "main" + Q$ + ","
PosCmd$ = PosCmd$ + Format$(ViewerX) + ","
PosCmd$ = PosCmd$ + Format$(ViewerY) + ","
PosCmd$ = PosCmd$ + Format$(ViewerWidth) + ","
PosCmd$ = PosCmd$ + Format$(ViewerHeight) + “,1,0)"

' create Viewer Jump command
JICmd$ ="JI(" + Q$ + MVB$ + Q$ + "," + Q$ + Context + Q$ +

' get identifier for Viewer task
vwrViewer% = VwrFromMVB(MVB$ + Chr$(0))

' Issue command . .
' note: if Viewer is not running, vwrViewer% = 0
' This causes VwrCommand to start Viewer

vwrRet% = VwrCommand(vwrViewer%, MVB$ + Chr$(0),
PosCmd$ + ";" + JICmd$ + Chr$(0), cmdoptNONE)

End Sub

18. Save the project files, and compile them to create an EXE file named
CHAP10 1.EXE in the \VIEWERHT\CHAP10 1 directory on your hard
drive, then exit VB.



19. Execute the compiled program. Select an object on the form and press
[F1]. The screen should look like Figure 10-2. Repeat this for each
object. Try closing the Viewer window in between by double—clicking on
the System menu box at the upper left corner of the window. Click on the
Exit button to end the test.

{ewc vwrht2, TsTextButton, "Figure
101 22" [Macro=JI( viewerht. mvb>SecWin', 'figl0_2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

The Form_Load subroutine assures that the windows won’t overlap by
forcing the VB program’s window to occupy the left half of the screen, and
by calculating the desired size and position of the Viewer window in the right
half. This gets a little tricky because Viewer’s window—positioning command
requires that the values be in pixels, but VB doesn’t give access to the size of
its complete window in pixels—only the size of the user area. This routine
gets the size of the user area in both twips and pixels, then applies the
pixel/twip ratio for the current screen to the window’s size and position.

The KeyDown subroutines call the common ContextHelp subroutine,
passing the context string of the desired Viewer topic.

The ContextHelp subroutine first creates strings containing the Viewer
PositionTopic and JumpID (in the abbreviated JI form) commands, using the
same format those commands use in a Viewer topic. Then you execute the
VwrFromMVB API function to get a special Viewer—instance identifier. This
function returns zero if a Viewer task isn’t running for the specified file. The
VwrCommand function is then called with the instance identifier. A value of
zero instructs this function to start a Viewer session for the specified file.

You probably noticed that the Viewer window appears for a moment in the
lower-right corner of the screen before it expands to fill the desired area.
This initial appearance comes from the values you entered in the Top, Left,
Height, and Width fields in Project Editor’s Window Properties dialog box. If
you can predict the size and position you want, enter the proper values in
those fields to avoid the two—stage appearance of the Viewer window.

The Command1_Click subroutine works similarly to the ContextHelp
routine. If VwrFromMVB returns a nonzero value, the VwrQuit function is
called to end the Viewer session. There’s no need to do this if a zero is
returned, of course—that means the user already ended the session.

The Viewer document file is straightforward. You create one topic for each
subject, with a context string that matches those in the VB program. In this
example you don’t provide the user with any means of navigating between
topics—each topic stands alone. You delete the default Config script in step 3
to eliminate the standard buttons and menus as part of this effort to make
each topic unique. In a real help file you might allow normal navigation, and
provide a table of contents, browse groups, and other navigation aids. The
Viewer application would probably also include sounds or other multimedia
functions that WinHelp doesn’t support easily.

Comment
In a more complex program, the HelpContextID values could be passed to



the common ContextHelp routine. They would determine the context string
as the index into a table or by converting directly to a string in the form
topic_nn.

Visual Basic comes with sample programs such as CallHelp and
IconWorks that demonstrate techniques for calling WinHelp. Although the
VwrCommand function does not support the options available in WinHelp,
you can easily implement these options by executing the appropriate Viewer
command in place of JumpID when executing the VwrCommand function.



10.2 Howdol ...
Coordinate a Program with Viewer?
Complexity: ADVANCED

Problem

I want to use VB and Viewer together to produce an integrated application,
using the abilities of each one as appropriate. This means I need to have both
windows reflect user actions in either window.

Technique
You use the Visual Basic custom control (MV.
{vfld137438953482} VBX {v{ld-9223091103043944448}) included in the
CD-ROM enclosed with this book to make the VB program aware of user
actions in the Viewer window. The VB program issues commands to the
Viewer window based on actions taken in the VB window.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and create the Viewer files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP10 2, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP10 2. Create these
four directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPI10 2 directory. Enter the name of your document file
as TEXT\CHAP10_2.RTF.

3. Choose Window Definitions from the Section menu, then click on the
Properties button. Enter 512 in the Left and Width fields, and Viewer
Window in the Window Caption field. Double—click on the System
menu box to close this dialog box, then click on OK to return to the main
Project Editor window.

4. Choose Title Options from the Section menu, and enter contents in the
Contents Topic field. Click on OK.

5. Choose Config from the Section menu, and paste in a RegisterRoutine
command. Edit that command and enter * VBMVLINK' in the DLLName
field, "BroadcastMessages' in the FunctionName field, and ~U' in the
ParameterSpec field.

6. Type BroadcastMessages(hwndApp)as the next command in the
Config script. External commands can’t be in the pull-down list because
they are unknown to Viewer. Click on OK.

7. Choose Groups from the Section menu, then click on New to define a
new group named Groupl. Clear the Searchable check box, then click on
OK.

8. Save your updated project file.

9. Use Project Editor to start Word and create your document, and create a
new topic with context string contents. Be sure to delete the page break
created before your topic.



10. Use Topic Editor to create a Topic group footnote, specifying Topic
Browse Sequence Groupl and Sequence Number 005.

11. Use Topic Editor to create a Title footnote, specifying Contents as the
title.

12. Enter text:

This is the table of contents topic. Click on a hot spot or use the
Browse buttons to display a different topic.

13. Insert a couple of blank lines, then define three hot spots with text Jump
to topic 1, Jump to topic 2, and Jump to topic 3. These hot spots
should refer to context strings topic_1, topic_2, and topic_3
respectively.

14. Define a new topic with context string topic_1, Browse Sequence
Groupl and Sequence Number 010, and title Topic 1. Enter text:

This is topic number 1.

15. Create topic 2 and topic 3 similar to topic 1.
16. Save the document and compile as usual.

Next create the VB program:

17. Create a new project called CHAP10 2.MAK, and save it in the \
VIEWERHT\CHAPI10 2 subdirectory. Create a new form, filling the left
half of the screen, and create the objects and properties listed in Table
10-2. The position of the objects is not critical.

Table 10-2. Coordinated Project Objects and Properties

Object Property Setting
Form FormName Chapl0 2
Caption VB Window
MaxButton 0 (False)
Button Name Command1
Index 0
Caption Display Contents
Left 360
Height 495
Top 1920
Width 2055
Button Name Command]
Index 1
Caption Display topic 1
Left 360
Height 495
Top 2640
Width 2055

Button Name Command]1



Index
Caption
Left
Height
Top
Width
Button Name
Index
Caption
Left
Height
Top
Width
Button Name
Caption
Left
Height
Top
Width
Label box Name
Caption
Height
Left
Top
Width
Label box Name
Caption
Height
Left
Top
Width

2

Display topic 2
360

495

3360

2055
Command1
3

Display topic 3
360

495

4080

2055
Command2
Exit

3480

495

3000

1215
Labell
Last Viewer action:
375

360

240

1800
Label2
(none}

495

360

840

4455

18. Choose Add File from the File menu, and select the MV.VBX file in
your Windows System subdirectory, then double—click on the new icon
in the Toolbox to add the control to your program. The screen should
look like Figure 10-3. Save the form as CHAP10_2.FRM.

{ewc vwrht2, TsTextButton, "Figure
101 23" [Macro=JI( viewerht. mvb>SecWin', 'figl0_3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

19. Create a new module, enter the following code, and save it as

CHAP10_2.BAS:

' ScaleMode
Global Const TWIPS =1
Global Const PIXELS = 3



' Viewer Constants
Global Const cmdoptNONE = 0
Global Const cmdoptHIDE = 1

20. Enter the following code in the Declarations section of your form:

Dim VPos As String

Dim vwrViewer As Integer

Dim ViewerX, ViewerY, ViewerWidth, ViewerHeight As Integer
Dim JumpRequested, EndRequested As Integer

Declare Function VwrQuit Lib "mvapi2.dll" (ByVal iVwr As Integer) As
Integer

21. Enter the following code in the Command2_Click event subroutine to
terminate Viewer and the VB program:
Sub Command2_Click ()

' end Viewer
EndRequested = True
Ret% = VwrQuit(vwrViewer)

"end VB Program
Unload chapl10_2
End

End Sub

22. Enter the following code in the Command1_Click event subroutine to
cause Viewer to display the requested topic:
Sub Command1_Click (Index As Integer)

JumpRequested = True
Q$ = Chr$(34)
Label2.Caption = "Jump requested"

MV1.ViewerTitle="CHAP10 2.MVB"
MV1.Vwr = vwrViewer
Cmds$ ="JI(" + Q$ + "CHAP10 2.MVB" + Q$ + "," + Q%

If Index = 0 Then

Cmd$ = Cmd$ + "contents"
Else

Cmd$ = Cmd$ + "topic_" + Format$(Index)
End If

Cmd$ =Cmd$ + Q$ + ")"
MV1.ViewerCommand = Cmd$
MV1.ViewerExecute = True

End Sub

23. Enter the following code in the Form Load event subroutine to position
the VB program’s window in the left half of the screen, calculate the
position that the Viewer window should occupy, and start Viewer:

Sub Form_Load ()

' set this window's size & position
Width = Screen.Width / 2



Height = Screen.Height
Top=0
Left =0

calculate Viewer windows's size & position, in pixels
ScaleMode = TWIPS

TwipHeight = ScaleHeight

TwipWidth = ScaleWidt

ScaleMode = PIXELS

PixelHeight = ScaleHeight

PixelWidth = ScaleWidt

ViewerX = ((Width * PixelWidth) / TwipWidth)
ViewerY = 0

ViewerWidth = ViewerX - 1

ViewerHeight = ((Height * PixelHeight) / TwipHeight)

Q$ = Chr$(34)

VPos = "PositionTopic(" + Q$ + "main" + Q$ + ","
VPos = VPos + Format$(ViewerX) + ","

VPos = VPos + Format$(ViewerY) + ","

VPos = VPos + Format$(ViewerWidth) + ","

VPos = VPos + Format$(ViewerHeight) + “,1,0)"

—~—

JumpRequested = False
EndRequested = False
Label2.Caption = "File Load"

Show

MV1.ViewerTitle = "CHAP10 2.MVB"
MV1.Vwr = NULL
MV1.ViewerCommand = VPos
MV1.ViewerExecute = True
vwrViewer = MV1.Vwr

End Sub

24. Enter the following code in the MV1_EndJump event subroutine to
respond to Viewer topic jumps:

Sub MV1_EndJump (vwr As Integer, TopicAddress As Long,
ScrollPosition As Long)

If vwr = vwrViewer Then
If JumpRequested Then
JumpRequested = False
" ##O")LabeIZ.Caption = "Jump to topic " + Format$(TopicAddress,

Else
MV1.ViewerTitle = "CHAP10 2.MVB"
MV1.Vwr = vwrViewer

MV1.ViewerCommand = "Back()" " Undo the jump
MV1.ViewerExecute = True
End If

End If

End Sub

25. Enter the following code in the MV1_ MinMax event subroutine to
respond to minimizing or maximizing the Viewer window:
Sub MV1 MinMax (vwr As Integer, MinMaxState As Long)



If vwr = vwrViewer Then
MV1.ViewerTitle = "CHAP10 2.MVB"
MV1.Vwr = vwrViewer
MV1.ViewerCommand = VPos
MV1.ViewerExecute = True
IEaléeIIfZ.Caption = "Sjze restored"

n

End Sub

26. Enter the following code in the MV1_Size event subroutine to respond to
resizing the Viewer window:
Sub MV1 Size (vwr As Integer, iWidth As Long, iHeight As Long)

If vwr = vwrViewer Then
If (iwidth <> ViewerWidth) or (iHeight <> ViewerHeight) Then
MV1.ViewerTitle = "CHAP10_2.MVB"
MV1.Vwr = vwrViewer
MV1.ViewerCommand = VPos
MV1.ViewerExecute = True
Label2.Caption = "Size restored"
End If
End If

End Sub

27. Enter the following code in the MV1_Term event subroutine to respond
to terminating the Viewer session:
Sub MV1 Term (vwr As Integer, hViewerlnst As Long)

If vwr = vwrViewer Then
If Not EndRequested Then

StartRequested = True
MV1.ViewerTitle = "CHAP10_2.MVB"
MV1.Vwr = NULL
MV1.ViewerCommand = VPos
MV1.ViewerExecute = True
Label2.Caption = "Viewer restarted"
End If

End If

End Sub

28. Save the project files, and compile them to create an EXE file named
CHAP10_2.EXE in the \VIEWERHT\CHAP10 2 directory on your hard
drive, then exit VB.

29. Execute the compiled program, and the Viewer window should appear in
a few moments. Try using the Viewer hot spots or Browse buttons to
jump between topics—these jumps should be immediately undone by the
VB program. Click on the VB buttons, and the requested topic should
appear in the Viewer window. The screen should look like Figure 10—4.
Use the Min and Max buttons on the Viewer window. Does the VB
program restore the normal window properly in each case? Click on the
Exit button in the VB window to end both programs.

{ewc vwrht2, TsTextButton, "Figure
101 %%4"[Macro=JI(" viewerht.mvb>SecWin', ‘figl0 4')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



How It Works

The Viewer files are straightforward, with the addition of defining and
executing the BroadcastMessages external command in steps 5 and 6. This
command activates the link to the VB custom control (MV.VBX), and causes
Viewer events to be reported to the VB program. These events are handled by
a number of new VB event subroutines.

The Command2_Click subroutine is almost exactly the same as in How—
To10.1. It assumes that a Viewer session is running because other routines
restart the session if it is ended outside this routine. The EndRequested flag is
set to prevent such a restart.

The Command]1 _Click subroutine uses the custom control properties to
issue a Viewer jump command to the requested topic. The JumpRequested
flag is set to show that this jump should not be reversed when it is reported
back to this program.

The Form_Load subroutine is almost identical to the routine in How—To
10.1. It uses the custom control properties to issue the command to start
Viewer, initializes the JumpRequested and EndRequested flags, and saves the
Viewer instance identifier that other subroutines use to identify messages
from the proper application.

The EndJump subroutine executes every time the Viewer application
displays a different topic. It first checks if the Viewer instance reporting this
jump is the one this program is controlling. If not, this subroutine does
nothing. If the jump is not requested from within the VB program, a Viewer
Back() command is executed to reverse the jump. Otherwise the
JumpRequested flag is turned off and the text box is updated. The Topic
Address value returned by Viewer is included in the text box message.

The MinMax subroutine executes when the Viewer window is minimized
or maximized. It checks the Viewer instance, and ignores messages from
other applications. The Viewer PositionTopic command returns the window
to its desired size and position. This command is sucessful if the window is
maximized, but not if it is minimized. This subroutine should use Windows
APIs to restore the Viewer window. The Size subroutine executes the same
PositionTopic command unless the window is being restored to its normal
size and position.

The Term subroutine executes when the Viewer session is ending. If this is
not requested within the VB program, the Viewer session is restarted. This
subroutine never actually does anything because the Viewer instance being
terminated never matches the saved value—it is always reported as zero.

If two or more Viewer sessions are executing at the same time, each of
them reports its events to any program that is using this VBX. All of your
VBX event subroutines must compare the Viewer instance value for the
current event to the value for the Viewer session you are trying to monitor or
control. This lets your program handle events from the right session while
ignoring any others. Some non—Viewer applications may also cause some of
these events to be reported with an instance value of zero.

Comment
You can make a simple and interesting enhancement to this demonstration by



defining another button in the VB program with the caption Allow A Jump.
The Click event for that button should turn on the JumpRequested flag, but
not issue a Viewer command. This lets you make one jump in the Viewer
window that is not reversed, but is reported in the VB text box. This should
help you understand the control you can have over a Viewer window from
within a VB program.

The topic numbers reported in the BeginJump and EndJump subroutines
do not have any obvious meaning—they are not sequential numbers or any
other obvious intent. The values may change when the Viewer application is
recompiled. These characteristics make them difficult to use. You should
store the values in a table in your program so that they can be updated easily.



10.3 Tips and Tricks

= Viewer commands can also be issued by Word for Windows by using
{vfld137438953482} WordBasic{v{ld72057052872048640}. For
example, the following section of code issues a Jump command to
Viewer:

Declare Function VwrCommand Lib "mvapi2.dll" (vwr As Integer,
MVB$, Command$, optCmd As Integer) As Integer

Sub Main
i = VwrCommand(NULL, "CHAP10 2.MVB",
"JI("CHAP10_2.MVB', topic_2")",0)

End Sub

= The Viewer variable {vfld137438953482}hwndContext{vfld-
9223356093936173056} is defined incorrectly in the Viewer
documentation. It is the Windows handle of the current window’s master
pane, not of the window itself.

= The IParam1 and IParam?2 parameters for the DW_SIZE message are
described incorrectly in the Viewer documentation. The LOWORD of
[Param1 contains the width of the main window, and the HIWORD
contains the height. IParam?2 is always zero.

= Viewer 1.0 used {vfld137438953484}hdc{vfld-
9042384167995703296} as the name of a field in the RenderInfo
structure. This has been renamed as hds in Viewer 2.0. You must change
this if you convert an old program.

= The {vfld137438953484} PositionWindow {v{ld-9223356093936173056}
command in Viewer 1.0 and WinHelp uses all of the SDK’s SW__ values
for the window state, although the documentation states that only 0, 1,
and 2 are allowed. Viewer 2.0 actually does use only the documented
values of 0, 1, and 2. You must change older programs accordingly to use
them with Viewer 2.0.

= All Viewer {vfld137438953482}handle{vfld-9042102693018992640}
variables are 32-bit values, in preparation for Windows NT and other
future releases. Although Windows 3.1 API functions expect 16-bit
handles, they work properly if the handle is the first parameter. The
method used to pass these parameters assures that the extra 16 bits are
not seen by the API. For example, you can use the MessageBox function
to display author—defined error messages: define the function by
including
RegisterRoutine("user","MessageBox","USSu")
in your Config script, and executing the external command with

{vf1d2305865549202063371} MessageBox{vfld-
9079242005371944960} (hwndApp,"message","title",0).



=| Microsofl Visuzal Basic [design]

[ ][]

File Edil Yiew HRun Debuy  Oplivns  YWindow  Help

ot 2 1= s S O R A A

TEFFMEI0E

¥iewer Help Demao

L

[
& HE | PEIEM
td HELPFORM.

Gyl
[l




= Viewer Help Demo - Demo Help
212 the help anrren for the first test bos

Firzt Text Box .
t could easly conbar pachares, soutics, o=z, or

andmet.crs, juet ke any other Woevwrer topic.

Sevurnd Texl Bun




Microsofl Visuzal Basic [design]

ME
File Edil Yiew HRun Debuy  Oplivns  YWindow  Help
1| B sl fr =1 1[= I i o | 2 - spseco I seEFwTIsC

CHAP1D 2 MAK

| ¥ews Fonn Il Yicw Cunke I

IHAFTIL? FHM chAnl I
it CHAP10_2 BAS

EPMYVEN

=l| Properties

Il.:hd|.l1 02 Fun

I... u-E 1

Fakc
EHED0CO00GE | |

2 - Dizabl=

True
True
|3-Copy Pen
| Iraw-tyle - 4Hmir

Ciraviwfid:h 1




VB Window bl Viewer Window

File Edil Boukinark Help

Last ¥iewe Avtan. Contecntz |Ga Back | Hiztary

T 10 (T 2y “ru 1 Lol wurnber 1.

D esplay Cunlenls

Nizplay bapir: 1

Dizplay topic 2

Cisplay topic 1







When you design a large application, you must make it easy for the user to
locate desired information. You do this, in part, by placing information into a
logical hierarchy of topics and groups, and giving the user a clear path
through carefully placed hot spots. Sometimes this isn’t enough—the user
may not know enough to identify the topic or group containing the needed
information, or the information may be spread over a number of different
topics. Then the user must depend on Viewer’s Index and Search functions.

The Index function corresponds to the index in a book. The user looks up a
word in the list provided and gets a list of associated topics. The user then
selects one of those topics, and Viewer displays it. The index is created when
you define keywords in your topics, as demonstrated in Chapter 3. You can
define keywords anywhere within a topic, not only at the beginning. The
topic displays from the beginning of the paragraph containing the selected
keyword. You can also use more than one keyword list. This can be useful if
you want to divide a long list of keywords into logical categories. How—To
11.1 demonstrates this technique.

One of the greatest strengths of Viewer is its powerful searching capability
and the degree of control it gives you. In its simplest form, this lets the user
search for any word in the entire text of your application. The user can search
for words or phrases anywhere in the text, or limit the search to topic groups
or text categories you define. The search criteria can combine terms with
logical operators (such as and, or, and nof) to refine the search. Viewer
creates the Search dialog box dynamically, based on the capabilities you
define. Figure 11-1 shows a Search dialog box showing all of the standard
options.

{ewc vwrht2, TsTextButton, "Figure
11i;%21"[Macro=JI('viewerht. mvb>SecWin', "figl1 1")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Viewer lets the author control and customize the Search function in many
ways—all with the goal of making it easier for the user to find the desired
information. You can

U Define search
{vfld137438953482} fields{v{ld4363420484763648}, which are
categories of information containing a group of words or phrases
just like index keywords. The user can select from a list of
entries. How—To 11.2 demonstrates the use of fields.

U Use numeric data, as well as characters, within fields. This lets
the user search for values such as dates or numbers. You define
fields such as birthdates, ages, or weights that can be used in the
search criteria. The numbers must be in the proper format to be
interpreted properly. How—To 11.2 describes the standard
formats supported by Viewer.

U Use {vfld137438953482}aliases {vfld-9223356093936173056}
to define alternate versions of words or phrases in your text. This
could include alternate names (Samuel Clemens for Mark Tain)
or alternate formats of text required for numeric fields
(07/04/1776 for July 4, 1776 or American Independence Day).
Aliases can also associate searchable text with pictures or



multimedia elements. Aliases are usually assigned to fields.
How-To 11.3 demonstrates the use of aliases.

Define topic groups that the user can select from, to limit the
scope of a search operation. These topic groups do not have to be
the same groups used for Browse operations, but may include
Browse groups if desired. A topic can be included in more than
one Searchable group. How—To 11.4 demonstrates the use of
Searchable topic groups.

Use {vfld137438953482} fuzzy searches{vfld-
9223356093936173056} for words, by comparing only the word
stems, rather than the entire words. The selected words are
usually, but not necessarily, closely related. For example, a
search for meteorite would match with terms including meteor
and meteoric. You might also expect it to match meteorology, but
it doesn’t. How—To 11.4 demonstrates the use of fuzzy searches.
Exclude common words from the Search index to reduce the
index size and speed up the search. Viewer already eliminates
common terms such as the, and, and or—you can add any other
words use frequently that would not be useful for searching.
How—To 11.4 demonstrates this procedure.

Control the handling of special characters, such as a or . This
procedure is not demonstrated in this book, but is explained in
the Viewer documentation.

Create a custom Search dialog box, which may use specialized
search logic. This requires moderately difficult programming. A
sample custom Search program is included the MVSAMPLE
directory on the enclosed CD—ROM disk.

The response to a search operation is a list of topics that meet the specified
criteria. The search can be repeated with additional limits to reduce the
number of topics if desired. When the user double—clicks on one of the listed
topics, Viewer displays that topic with all of the matching terms highlighted.
Figure 11-2 shows an example of this list and a topic with highlighted

{ewc vwrht2, TsTextButton, "Figure

117 22"[Macro=JI( viewerht. mvb>SecWin', "figl1 2")] [Font="Arial"

/S12/B4] /W100 /H40/B1/D2}



11.1 Howdol ...
Use Multiple Keyword Tables?
Complexity: EASY

Problem

I want to include an index
{vfld137438953482 } keyword {vfld4572278980522016768} list, but I have
so many keywords that the user may be confused. I need to define two or
more separate lists, and let the user choose which list to use.

Technique
You use Project Editor to define two keyword lists, then use Topic Editor to
define keywords within each list.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPI1 1, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP11 1. Create these 4
directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPI1 1 directory. Enter the name of your document file
as TEXT\CHAP11_1.RTF.

Next define the index keyword groups:
3. Choose Keyindex from the Section menu. The Main Keyword Index
group appears. Change the Title to Standard Terms.

4. Click on the New button to define a new group, and change the Title to
Technical Terms. Click on OK, then save the updated project file.

Next create the document file:

5. Use Project Editor to start Word and create your document, and create a
new topic with context string topic_1. Be sure to delete the page break
created before your topic. Create a Topic Title of Introduction.

6. Type the first two paragraphs from the introduction to this chapter into
the document. Separate them with a blank line, or use a paragraph format
with an extra indentation on the first line, so that you can easily
distinguish the paragraphs. Enter about 24 blank lines after the text.

7. Move the insertion point to the beginning of the topic and activate Topic
Editor. Select Keywords (K footnote) and click on OK. The Standard
Terms keyword group is already selected.

8. Enter the following terms in the Topic Keywords list, then click on OK.
Enter one term on each line:

large application
locate
hierarchy



9. Without moving the insertion point, define another Keyword footnote.
Select Technical Terms from the Keyword Index pull-down list, then
enter the following Topic Keywords:

Index
Search

10. Move the insertion point to the beginning of the second paragraph, and
enter the following terms in the Standard Terms keyword group:

index
categories

11. Define a Keyword footnote for the Technical Terms group, as you did in
step 9, and enter the terms:

index
topics
keywords

12. Create a new topic with context string topic_2 and Title Search
Introduction. Copy the third and fourth paragraphs from the
introduction to this chapter in the same way as in step 6, including the
extra blank lines.

13. Create the following keyword footnotes for the first paragraph, in the
same way as in steps 7 through 9:

Standard Terms:
author
user

Technical Terms:
search
index

14. Create the following keyword footnotes for the second paragraph, in the
same way as in steps 10 and 11:

Standard Terms:
author
criteria

Technical Terms:
search
index

15. Save your document, and compile and test as usual. The index dialog box
should look like Figure 11-3.

{ewc vwrht2, TsTextButton, "Figure
11i;%23"[Macro=JI('viewerht. mvb>SecWin', "figl1 3")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

16. Select entries defined in the first and second paragraphs of either topic.
The appropriate paragraph should appear at the top of the window. Select
an entry that shows 2 under the # of topics column of the dialog box. A
second dialog box appears, showing the list of topic titles containing the
term and allowing you to choose which topic to display.



How It Works

You didn’t have to define an index group in earlier How—Tos because the
main group is always defined by default. When you want to use more than
one group you must define them through Project Manager, as you did in steps
3 and 4. After defining the groups, you can add keywords to the new groups
through Topic Editor.

Comment

The extra blank lines allow the last paragraph to scroll to the top of the
window when a keyword defined in that paragraph is selected. If they are not
added, the topic scrolls as far as possible, but one or more earlier paragraphs
also display.



11.2 Howdoll ...

Define Search Categories with Fields and Data Types?
Complexity: ADVANCED

Problem
I want to define several categories of terms to use when searching for topics.
These categories include character text, dates, and numbers.

Technique
You define each category as a field, associate it with the proper type of data,
and assign portions of your text to the appropriate field. You use part of the
introduction to this chapter as the document text, just as you did in the
previous How—To.

You create the standard directories, project file, and document file for this
How-To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPI11 2, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP11 2. Create these
four directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPI11 2 directory. Enter the name of your document file
as TEXT\CHAP11_2.RTF.

Next define the fields:

3. Choose Searchdlg from the Section menu to display the Search definition
dialog box. (This dialog box, and the one used to perform searches, are
both titled Search. To prevent confusion, they are described here as the
Search definition and Search operation dialog boxes.) Click on the New
button to create a new field, named Field 10

4. Leave the Search Data Type unchanged, enter All Text in the Title field,
enter O as the Search Field Number, and leave the Word Wheel
Subfilename blank. The completed dialog box should look like Figure
11-4.

{ewc vwrht2, TsTextButton, "Figure
11i;%24"[Macro=JI('viewerht. mvb>SecWin', "figl1 4")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

5. Click on the New button again. Leave the Search Data Type unchanged,
enter Technical Terms in the Title field, leave the Search Field Number
unchanged as 10, and enter FLD10 in the Word Wheel Subfilename.

6. Click on the New button again to create Field 11. Choose Number from
the Search Data Type pull-down list and enter How-To Sections as the
Title. Leave the Search Field Number unchanged and the Word Wheel



Subfilename blank.

Click on the New button once again to create Field 12. Choose Date from
the Search Data Type pull-down list and enter Dates as the Title. Leave
the Search Field Number unchanged and the Word Wheel Subfilename
blank. Click on OK, then save your updated project file.

Next create your document file:

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Use Project Editor to start Word and create your document, and create a
new topic with context string topic_1. Be sure to delete the page break
created before your topic. Create a Topic Title of Topic 1.

Type the text of the first four bullets of this chapter’s introduction into
this topic as separate paragraphs.

Create a new topic with context string topic_2 and title Topic 2. Type
the text of the remaining four bullets from the introduction into this topic.

Select the word search in the first paragraph of the first topic. Activate
Topic Editor and select Search field.

Two elements, both named Search Field—All Text, appear. Leave the
first one selected, and select Technical Terms from the Search Field pull—
down list on the right side of the dialog box.

Click on OK. Your text should now contain {vfld10}search{vfld}. The
second vfld entry, which was produced by the second Search Field
element in the dialog box, resets the field number to its default value of
zero. This allows the text that follows the word you selected to be
included in the All Text category.

Repeat the process in steps 11 through 13 to define all occurrences in
both topics of the words search, index, browse, and format as Technical
Terms fields.

Select the How—To section number (11.2) at the end of the first
paragraph. Activate Topic Editor and select Search field with data type.

Four elements appear—two Search fields and two data types. Use the
pull-down lists to select How—To Sections for the first search field
element, and Number for the first data type element. Leave the second
element of each type unchanged. Click on OK.

Repeat the process in steps 15 and 16 to define the date in the third
paragraph of the first topic, formatted as 07/04/1776, as a Dates search
field with a data type of Date. Your document should look like Figure
11-5.

{ewc vwrht2, TsTextButton, "Figure
111, 25" [Macro=JI( viewerht. mvb>SecWin', "figl1 5")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Save your document, and compile and test as usual.

Click on the Search button to display the basic Search operation dialog
box. Click on the Search by Category button to enlarge the dialog box by
including the Search by Category section. Notice that the button you just
clicked has been recaptioned as Search by Word. Clicking on that



removes the Category section.

20. Select Technical Terms from the Category pull-down list. Notice that a
pull-down list becomes available to select a keyword, as shown in Figure
11-6. Select search from that list, then click on OK.

{ewc vwrht2, TsTextButton, "Figure
111;%6"[Macro=JI("viewerht.mvb>SecWin', "figl1 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

21. You see the first topic, with all occurrences of the word search
highlighted, plus a dialog box that lets you choose which topic you want
to see, as shown in Figure 11-7.

{ewc vwrht2, TsTextButton, "Figure
11i; 27" [Macro=JI( viewerht. mvb>SecWin', "figl1 7")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

22. Try the other categories. They don’t have keyword lists, so you have to
enter terms you know exist, as explained below. What happens if you use
search as a keyword in the All Text category? Use the Add Row button to
create compound searches, looking for topics with more than one
selected keyword in one or more categories.

How It Works

Viewer creates the {vfld137438953482} All Text{vfld-
9078975914968088576} category (field 0) automatically if you have any
topics with titles ($ footnotes). This category includes all of the text in those
topics, including text that is part of other categories. You defined the category
because it wouldn’t appear in the Category pull-down list otherwise; it would
only be used in the Search by Word alternative to searching by category.
When this category is defined, the user can use either method the same way,
and can combine terms from the general and specific categories in a single
compound search operation.

A {vfld137438953482} pull-down list{v{ld-9223356093936173056} of
keywords, such as you found for the Technical Terms category, is produced
as a result of placing an entry in the Word Wheel Subfilename field when the
category is defined. The Viewer documentation refers to this as a word wheel
list. If you leave that field blank, the user must enter a term without
assistance. Viewer won’t create such a list for field 0. That’s just as well—it
would be too big, since that field contains all of your text.

Comment

The {vfld137438953484}field numbers {vfld4221583484780544} you can
use start with 10. Fields 0 through 9 are reserved by Viewer. Field 0 is the All
Text category and field 1 is text in the non—scrolling region. The other fields
have not been identified.



Viewer does not support defining fields within fields. As a side—effect of
this, defining fields in the {vfld137438953484}non—
scrolling region{vfld3413442438365184} (all of which is field 1) is
officially unsupported. It works in some cases and not in others, but cannot
be counted on. You can, however, achieve the same result through the use of
aliases, as demonstrated in How—To 11.3.

The Options button in the Search dialog box offers the user the chance to
restrict searching to
“{vfld137438953484 } topic titles{vfld1045116047360786432} only.” This is
an inaccurate description—it really means to search only the non—scrolling
regions. This is why the text in those regions is in field 1.

The Search definition dialog box, shown in Figure 114, allows you to
define the meaning of the term {vfld2305858952132296714} near{vfld-
9223357193447800832} as it is used when the user performs a search.
Viewer lets the user search for topics where one specified term is within a
certain number of words of a second specified term, as termli near term2.
You can specify the default number of words in the definition dialog box.
The user can choose a different value through the dialog box displayed when
the user clicks on the Options button in the Search operation dialog box.

Only topics that have titles ($ footnotes) are included in the Search
operation. This is why the compiler reports
{vfld2305858952132296716} Warning 6176{vfld-9223357193447800832},
No words in titled topics found to index; MVB file will lack full-text index for
most of the How—Tos in this book—none of the topics have titles.

The search operation always displays the selected topics in the master
pane of the main window. Topics that are not normally displayed there, such
as popups, are usually created without titles to exclude them from the search.
How—To 11.3 shows how to work around this if you want to include selected
terms from such topics in your search functions.

The numeric data types require entries in acceptable formats, as follows:

{v{ld137438953482} Numbers{vfld-9223356093936173056} (data type 1) can
contain a minus sign, commas, and decimal points. Scientific notation, which
includes the letter £ followed by an exponent, can also be used.

{vfld137438953482} Dates{v{ld-9223356093936173056} (data type 2) must be
either in the form mm/dd/yyyy, or a four—digit year with an optional suffix of B to
indicate a BC date. The year can be up to 11,767,033 (AD or BC).

{v{ld137438953482} Times{vfld-9223356093936173056} (data type 3) use the
form hh:mm:ss.dd. PM times use 24—hour times (i.e., 2:00 PM is 14:00). Elapsed
times, which may exceed 24 hours, are allowed. The seconds and hundredths are
optional.

{vfld137438953482} Epochs {v{ld-9223356093936173056} (data type 4) are
used for time values that are too large to represent as dates, such as “450 million
BC” The format is a number, with optional commas and an optional suffix of B
to indicate BC.







11.3 Howdoll ...
Use Fields with Aliases?
Complexity: ADVANCED

Problem

I want to let users search for dates without using the unattractive date format
in my text, and [ want to let them search for common synonyms of certain
words. I also want to define fields within a non—scrolling region, but this
caused many very strange compiler error messages when I tried. The
messages all said {vfld2305858952132296716} Warning 713 1{vfld-
9079242005371944960}: Field string too long in RTF source.

Technique
You define aliases with the desired searchable text in the necessary format.
This technique satisfies all three requirements.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP11 3, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP11 3. Create these
four directories for all projects, even if some are not needed.

2. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPI11 3 directory. Enter the name of your document file
as TEXT\CHAP11_3.RTF.

Next define the fields and the alias file:

3. Choose Searchdlg from the Section menu to display the Search definition
dialog box. (This dialog box, and the one used to perform searches, are
both titled Search. To prevent confusion, they are described here as the
Search definition and Search operation dialog boxes.) Click on the New
button to create a new field, named Field 10.

4. Leave the Search Data Type unchanged, enter All Text in the Title field,
enter O as the Search Field Number, and leave the Word Wheel
Subfilename blank.

5. Click on the New button again to create Field 11. Leave the Search Data
Type unchanged and enter Technical Terms as the Title. Leave the
Search Field Number unchanged and enter wwtech as the Word Wheel
Subfilename.

6. Click on the New button once again to create Field 12. Choose Date from
the Search Data Type pull-down list and enter Dates as the Title. Leave
the Search Field Number unchanged and the Word Wheel Subfilename
blank. Click on OK.

7. Choose Alias File from the Section menu to display a standard File Open
dialog box. Enter alias113.txt as the file name and click on OK. A



dialog box appears saying that the file does not exist and asking if it
should be created. Click on OK to display the Alias File dialog box
shown in Figure 11-8. Click on OK, then save your updated project file.
You’ll add alias definitions later.

{ewc vwrht2, TsTextButton, "Figure
11i; 28" [Macro=JI("viewerht. mvb>SecWin', "figl1_8")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Next create your document file:

8.

10.

11.

12.

Use Project Editor to start Word and create your document, and create a
new topic with context string contents. Be sure to delete the page break
created before your topic. Define a topic title of Contents Topic.

Without moving the insertion point, choose Paragraph from Word’s
Format menu and select the Keep With Next check box. Click on OK.
Type the first bulleted item from the introduction to this chapter into the
topic.

Press [ENTER] to end the paragraph, then repeat the procedure in step 9
to unselect the Keep With Next option.

Insert a blank line to separate the paragraphs, then type the second and
third bulleted items from the introduction to this chapter into the topic.

Now define the aliases:

13.

14.

15.

16.
17.

18.

Choose the first word in the non—scrolling region to define as a field—
use the second word in the text, search. Decide which field and data type
applies to this alias. This word uses field 11 (Technical Terms), data type
0 (Words).

Switch to Project Editor to define the alias by holding [ALT] and pressing
[TAB] until Project Editor is named, then release both keys. Select Alias
File from the Section menu to display the Alias File dialog box.

Click on the New button to define the first alias, number 0. Set the
Search Data Type to 0 (Words), and the Search Field Number to 11
(Technical Terms) by using the pull-down lists. Enter search as the
Alias Text and click on OK.

Repeat step 15 to define alias number 1, but enter find as the Alias Text.

The Word document window should still be visible on your screen. If it
is, click on it to switch back to Word. Otherwise, use [ALT]-[TAB] to
switch to that application as you did in step 14.

Select the word in the non—scrolling region to be aliased, activate Topic
Editor, and choose the Search alias entry to display the alias definition
dialog box shown in Figure 11-9. Enter O as the Alias Number, then click
on OK. Repeat the procedure to assign alias number 1 to the same word

{ewc vwrht2, TsTextButton, "Figure
1117 29" [Macro=JI( viewerht. mvb>SecWin', "figl1 9")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}



19.

20.

21.

22.

23.

24.

25.
26.

27.

Repeat steps 13 through 15 to define the word index, near the end of the
first sentence, as alias number 2. Enter index as the alias text in Project
Editor. Assign this alias to the word in the non—scrolling region as you
did in step 18.

Define aliases for all remaining occurrences of the words search and
index in the document as you did in step 18, using aliases 0 and 1 for
search, and 2 for index.

Repeat steps 13 through 15 to define alias number 3 as a data type 2
(date) and field number 12 (Dates) with alias text 7/4/1776.

Select the words July 4, 1776 in the third paragraph; activate Topic
Editor and select the Search alias entry. Enter 3 as the Alias Number, then
click on the element name on the left side of the dialog box. This updates
the dialog box fields with the definitions from alias number 3, so that you
can confirm that you selected the correct alias.

Position the insertion point on the line following the last paragraph, then
create a new topic with context string dummy_topic.

Enter the words search, find, and index. Select each, one at a time, and
use Topic Editor’s Search field entry to define each word as field 11
(Technical Terms). Note that you use the Search field and data type entry
if you want a data type other than 0 (Words).

Save your document, and compile and test as usual.

Click on the Search button, then Search by Category. Select Technical
Terms from the Category pull-down list, then select Find from the
Keyword pull-down list. Click on OK to display the results, as shown in
Figure 11-10. Notice that the occurrences of the word search in both the
non-scrolling region and regular text are highlighted. Also notice that the
second topic is not referenced.

{ewc vwrht2, TsTextButton, "Figure
11i; 210" [Macro=JI(" viewerht.mvb>SecWin', ‘figl1 10")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

Search in the Dates category for 7/4/1776. The phrase July 4, 1776 is
highlighted. Try searching for just the year 1776—the same text is found.

How It Works

In steps 3 through 7 you define the search fields you need. Field number 0
(All Text) is defined so that the user can use both the full text and selected
fields in compound searches. This is one of only two supported uses of fields
0 to 9, which are reserved by Viewer. (The other use is in aliases) In step 7
you create an alias file.

It is a little awkward to create aliases until you get used to it. First you use

Project Editor to define the alias (as in steps 14 and 15), then you use Topic
Editor to assign document text to a defined alias (as in step 17). The alias
definition contains four simple pieces of information—the alias number, data



type, field number, and alias text. Alias numbers start with 0 and continue
consecutively. You cannot skip any numbers. You can use reserved field
numbers (such as 0 for All Text) in an alias definition. The alias text is
matched against the user’s request in the search operation.

Assigning an alias through Topic Editor is very simple. You select the text
you want highlighted in case of a match, select Topic Editor’s Search alias
entry, and enter the desired alias number. The other fields in this dialog box
are filled in from the alias definition. They can be seen if you click on the
element field on the left side of the dialog box, as in step 22. You can assign a
single alias entry to as many words or phrases in the RTF file as you want, as
long as the alias definition and text apply to each. The dialog box you use to
define aliases has an option to search for a suitable alias entry.

The easiest way to create aliases is to size and position your windows so
you can see both Word and Project Editor at the same time—either side by
side or one above the other. The alternative is to switch between them by
using Windows’ [ALT]—[TAB] task switching feature.

You define aliases in the non—scrolling region (NSR) so that text in that
region can be included in a search field. The compiler errors occur because
the entire region is automatically part of reserved field 1. Viewer does not
support field definitions within field definitions, so defining fields within
NSR text usually doesn’t work. It may work in some cases, but the results are
unpredictable. It usually causes the poorly worded Warning 7131.

You create the {vfld137438953482}dummy topic{vfld-
9042384167995703296} in steps 23 and 24 because alias text is not included
in the list of keywords (word wheel list). You solve this problem by creating
a dummy topic containing definitions of the desired values for each field.
This topic does not have a title, which prevents these entries from being
selected by the search operation. The topic is not included in a Browse
sequence or referenced in a hot spot, which prevents users from displaying
this topic.

Comment

The most common use of aliases is to allow searching on numeric
information, including dates and times, while using a more pleasing form of
the information in the topic text. For example, July 4, 1776 is a better form
for your text than 7/4/1776. Aliases can also define alternate names, such as
Samuel Clemens for Mark Twain, and define fields within NSRs.

Aliases can associate searchable terms with pictures by placing the alias
command in the text immediately before the command that displays the
picture and specifying 0 characters to be highlighted. The easiest way to do
this is to place the insertion point where you want the alias command, then
activate Topic Editor without selecting any text. Then choose the Search alias
entry and enter an alias number as usual. The alias itself is defined as usual,
with the term to be used for searching.

Several aliases can be defined for a single term by repeating the standard
alias definition and assignment procedure as required. You end up with a
series of alias commands in your document, preceding the aliased text.

The search operation always displays the selected topics in the master
pane of the main window. If you want to let the user search text that is
usually displayed in a popup or other specialized window, the results may not
be attractive. If the specialized window is displayed by a hot spot, you can



solve this by defining the desired terms as aliases to that hot spot. If the
window is displayed by a topic entry command, define appropriate aliases in
the first paragraph of the topic containing the topic entry command. When
that topic is displayed by the search operation, the command executes,
causing the other window to also be displayed. These aliases usually do not

highlight any text.

(v(1d2305857852620668940}Alias {Vﬂdl 3331 578486784} ed terms can’t be used with the
{v{1d2305858952132296716} near{vfld-9223357193447800832} operator in
search operations. This is by design, and Microsoft does not consider it to be a
bug. Aliased terms do work with the Boolean search operators, such as and and

or.




1.4 Howdoll ...

Limit and Simplify Searches?
Complexity: EASY

Problem

I want to simplify and speed up searches by eliminating words I use often,
letting the user select which groups of topics should be searched, and
accepting words that are similar, not just identical, to the ones requested.

Technique
Viewer already excludes many common words. This How—To excludes
others by adding them to the stop file. Searchable topic groups are defined to
let the user select the topics to be searched. A different word—breaker routine
is selected to implement
{vfld137438953482} fuzzy searches{vfld4572278980522016768} based on
the stems of the requested words.

You create the standard directories, project file, and document file for this
How—To. (To review those procedures, refer to sections 3.1 and 3.2.)

Steps

First prepare the directories and files:

1. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAPI11 4, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP11 4. Create these
four directories for all projects, even if some are not needed.

2. Use the File Manager to copy USA.STP from the MVTOOLS
subdirectory of your Viewer Publishing Tookit directory (usually
MVPUBKIT) into your project directory, VIEWERHT\CHAP11 4.

Next update the project file:

3. Use Viewer’s Project Editor to create a new project file in your
VIEWERHT\CHAPI11 4 directory. Enter the name of your document file
as TEXT\CHAP11 4.RTF.

4. Choose FTINDEX from the Section menu to display the Data Types
dialog box.

5. Leave the Data Type Number as 0, and change the DLL Routine Name to
{vfld2305865549202063371} FBreakAndStemWords{vfld-
9079242005371944960}. This is the routine that provides fuzzy
searches. Click on the ellipsis (...) after the Stop—Word List Filename
field, then select file USA.STP. The completed dialog box should look
like Figure 11-11. Click on OK.

{ewc vwrht2, TsTextButton, "Figure
117 11"[Macro=JI(' viewerht.mvb>SecWin', "figl1 11")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

6. Choose Groups from the Section menu, and click on New to create a



group named Groupl. Clear the Searchable check box for this group.
Create Group2, select the Searchable check box, and enter Second
Group as the Title. Create Group3 with the check box selected and title
Third Group. Click on OK.

7. Save your updated project file.

Now update the {vfld137438953482}stop file{vfld-35321252696555520} to
exclude selected words:

8. Start Notepad, and open file USA.STP from your project directory,
VIEWERHT\CHAPI11 4. You see about three dozen numbers and words,
listed in alphabetic order, as shown in Figure 11-12.

{ewc vwrht2, TsTextButton, "Figure
111 212" [Macro=JI("viewerht.mvb>SecWin', ‘figl1 12")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

9. Insert the following terms, in the proper alphabetic sequence: can, How-
To, and Viewer. Save the file and exit Notepad.

Now create your document file:

10. Use Project Editor to start Word and create your document, and create a
new topic with context string topic_1 and title First Topic. Be sure to
delete the page break that is created before your topic.

11. Activate Topic Editor and select Topic Groups (+ footnote). Use the pull—
down list to select Groupl in the Browse Sequence field, and enter 010
as the Browse Sequence Number. Use the pull-down list for the Topic
Groups field to select the Group?2 entry. Click on OK.

12. Type the first bullet from the introduction to this chapter into this topic.
13. Create a new topic with context string topic_2, and title Second Topic.

14. Activate Topic Editor and select Topic Groups again. The Browse
Sequence and Browse Sequence Number fields still contain the values
used in the first topic. Leave the Browse Sequence unchanged, and
change the Browse Sequence Number to 020.

15. Use the Topic Groups pull-down list to select Group2. Click on the Insert
Group button to create a blank line in the list of groups, then select
Group3 from the pull-down list to add that group to the list of Topic
Groups, as shown in Figure 11-13. Click on OK.

{ewc vwrht2, TsTextButton, "Figure
11i; 213" [Macro=JI( viewerht.mvb>SecWin', ‘figll 13")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

16. Copy the second bullet from the introduction to this chapter into this
topic.

17. Create a new topic with context string topic_3 and title Third Topic.
Activate Topic Editor and select Topic Groups again. Change the Browse



Sequence Number to 030. Select Group3 in the Topic Groups list. Click
on OK, then copy the fifth bullet (which discusses fuzzy searches) from
the introduction into this topic.

18. Save the document file and compile and test as usual.

19. Try to search for Viewer—you get a message box saying, Your query is
empty or has no searchable words because you are searching for a term
in the stop file.

20. Try searching for meteor or meteorite. See which words match each
one.

21. Try limiting your searches to the second or third topic groups. The
second group finds words in the first or second topics, and the third
group finds words in the second or third topics. Notice that the first
group is not listed in the dialog box.

How It Works

In steps 4 and 5 you select a different DLL routine to process words while
searching your file. The new routine comes with Viewer. It extracts the stem
of each word, in both the document and your search request, and matches on
those shorter forms of the words. This results in more matches, but includes
many selections you don’t want. It can be difficult to predict which words
will or won’t match when using this type of comparison.

In step 5 you also assign a stop file, USA.STP, for words in your
document. You copy the default file into your project directory in step 2, and
update it in steps 8 and 9. This file contains a list of terms to be excluded
from the search operation, which makes the file index smaller and speeds up
the search. Note that no stop file is used, not even the default, unless you
request it through this dialog box.

You create three topic groups in step 6. Only the second and third are
searchable, so the first does not appear in the Search dialog box. You create
three topics in steps 10 through 17, and assign all of them to one Browse
group. You also assign the first two topics to Group2, and the second and
third topics to Group3.

Comment

Each topic can be in only one Browse Sequence (or none), but can be in
many Topic Groups. The same group definitions commonly apply to both
browsing and search limiting, because the same logical grouping may be
reasonable for both purposes.

Viewer only includes a fuzzy—search DLL routine to process English
words. Routines for other languages can be written, if you can decide how to
determine the roots of the words in the desired languages. One author has
already developed such a routine for {vf{ld137438953482}French{vfld-
35322352208183296} words. If you are interested in this routine, refer to
Appendix D.

Always include a stop file in any application that permits searching. Even
the standard file reduces the size of the index greatly.






11.5 Tips and Tricks

=

Always design searching and indexing capabilities in the context of your
topic structure and other navigational aids. Your goal should always be to
make all of these features operate logically, consistently and easily.

If your application has so much information that you think it needs both
searchable topic groups and multiple field definitions, you should
seriously consider writing a custom search dialog box that makes it easy
to select the desired options—otherwise, your users could be
overwhelmed by the variety of options.

Aliases can be useful when your users may be used to certain terms that
are synonyms for terms you use. For example, anyone who uses word
processing programs frequently might think of find, rather than search.
By making find an alias for search, as in How—To 11.3, this operation
could become easier for some users.

Use Word’s Find menu choice to locate occurrences of terms you want to
define as fields or aliases. The term remains highlighted when you exit
the dialog box, so it’s ready for you to activate Topic Editor. You can also
use Word’s Replace menu choice to find the terms and insert the desired
field or alias command in one fast and automatic operation. Just enter the
desired term in the Find What field, and the sequence of command and
term in the Replace With field.

The standard search function lists topics ordered by the hit density—the
ratio of matched words to total words in the topic. For example, suppose
a search returns two topics and the first has three matched words out of
50, and the second has five matched words out of 200. The first topic will
be listed first because it has a higher density, even though it has fewer
matched words.q



raearch by Word

(114

Cancel

Search In:
® All Topic Gioups
1 Selacled | opic LSroups

' Current Topic Only

Tapic Groupa:
Chapler - What 1= Viewerd
E<] Chapler 2 Designing o Yiewer Applic

Options. ..

[Z] Chapler % Creating a Simple Applicat

Hinlzs. .

[<] Chapler 4: Adding Graphics

<4 Scarch by Word

~wearch by Lategoiy

Catzgorny:

Miewer Tems

|-4e

Add Row

brow:e seqaerce

| RBemure Ruw

Pravious Search I




|

¥icwer Huer-To

ah
|"I‘r|

kile LEdt Hookmark Help

Contents | G0 Backl Histlory | Search |

€4 [ =

== Uf you want t3 v ee

file -ontaitdng the topics

Use a:.:mc-.:l_'.-' W ridows
Wiaat CanViewer Da?
Hrw Shodd 1T ezign thr 2 ppicacine ?

Al Ered AR it coriwiction wrth mliple
flcs, woarmst be zarcEs tc define the scconcary wmdow 1 the
desplased in that windowe [t doesn't

Search Aesulls - 4 Tupics Fommd

Wiemar Toims: secondan windows]

standard Wndow: sequence—the curren; dr=ctory, the Windows
di=zztery, the Wiadowes Syvetemn diectary, and the cirectones bsted
w fle 208 FATIC conunand o flie AUTOEEEZ DAT file. 1fth-
file 2till -2n"t frimd, Wewer cheror the [FTLES 2ectinn 27 the

4]
]

cpat hat causss the

o sulve Wiem by

part of a saecia

[praott sroap chtrsy of
How-To 7.2

benzz of croasn and

[roap, the zroap

> rrrntran s

Gao Ta
To Search

Cancel

e BLe, it mruay be
rectary. Voucan
ANTRT W=
dloub_e—clic.ony on
3z naiag the

Previouz Malch




Type a word, or zelect one from the hst

| ok _|
Index list # of Topics

author 2 ks

categories
criteria

hierarchy

index

large application
locate

uger

Cumrent index:

Standard Terms




= [SEARCHDLG] - Search Dialog

Search Categories:
Search Data Type: 1].4

| I:I_- YWwords | e—
Title: \:

[ T et |

Search Field Humber:
[0 |
Word Wheel Subfilename:

Comment:

| | Help |
MEAR means within words.




= k=41 il AP H w || .

=| File Edit Yiew Inset Format Tools Table Window Help

NEEIREEEE

.

= EEEIEIEEEIMIEI=EE

|Nurmal HEHTimes Hew Roman ||B | |B|I|L|| = t
C | ! |1 ! |2 ! | ! |4 ! +
= L L L L L L L L L

#-Define- {vild10} search{vild} -fields -which-are-categories-of information-conta
crouprofwords-orphrases-qustdice: {vild 10} indes {wild} keywords -Theuser-cal
frot-a-hst-of-entries “The-use-of-helds1s-demonstrated-mn-How-To-11.2.9
TTze-mumeric-data, -as-wel-as-characters, -withan-fields. - This-lets-the-user-
[wild 10} search{vfld} -on-values-such-as-dates-or-numbers. - The-authotr- defines-hiq
as-buth-dates,-ages,-or-weights-that--can-be-used-mn-the- {vid 10} search{vild} -cri
numbers-must-be-n-the-proper- {wild 10} format {vild} -to-be-interprete d-properly.
standard-formats-supported-by-Viewetr-are-described-at-the-end-of-How-To-
{vild11} {dtypel} 11 2{dtype} {vild} -which-demonstrates-the-use-of-data-types
Tzeraliasesto-define-alternate-versions: of-words-or-phrases-n-your-text < Thiz

| mnclude-alternate-names- (= amuel- Clemens for-blarle- Twam)-or- alternate formats- | *
- -

"Pg1  Gec i 142 a1 Ln1 o1 [ 100% | | INUM




~Search by Word

~Search In:
® All Topics
! Current Topic Only Hints.__

114

Cancel

Options. .

' List of Previous Topics Found << Search by Word

~Search by Category

Category: Kepword: |

Add Row

Technical Terms

Browze | Bemove Row
format
irdes

Previous Search




= How-To 11.2 Demo |‘r -

File Edit Bookmark Help
Eﬂntents Go Back I Hiséury I gean::h I 4.5 I 22 —
[efine E—ﬂelds, which are categones of information contaning a group of words or [ £
phrases st like index keywords, The user can select from a list of entries. The usze of
ficlds 1 : = =

[Technical Terms: zearch]

Go To

T | To Search

wour text. This could
itichued | Cancel ternate formats of text
1 rican Independence

IBEVD | Previous Match pictures o multime dia

5 15 demonstrated i

| Hext Match

scope of a gy
operation. The do not have to be the same groups used for Browse operations, but
may include Browse groups of deswred. A topic can be mecluded i more than one

U=earchable group. The use of Searchable topic groups 15 demonstrated in How-To
11 4




= Alias File - ALIAST13.TXT

Aliazes:

Aliaz Humber: oK

bl | |
e Cancel
Search Data Type: I

| - Find___
Search Field Humber:
| Find Again

Aliaz Text:

«[ | Comment:

Pramdode M | | Help |




= Viewer Topic Editor - CHAP11_3.MVP

Yiewer Elements:

Aliaz IZI characters in BTF file as:

Aliaz Humber:

E

Search Data Type:

0
Search Field:

11

Aliaz Text:

|search

1].4 | Cancel

| Help

About___




= How-To 11.3 Demo |'r -
File Edit Bookmark Help

Eﬂntents Erar B ank I Hiséury I gean::h I 4.5 I 22 _

[efine E—ﬂelds, which are categones of information contaning a group of words or

phrases st like index kevwords. The user can select frorm a list of entries. The use of fields 12

demonstrated in HowTo 11,2,

[Tse tmerin mer Hep on values such
as dates or g, of weights that can
be used m (Technical Terms: find) at to be mterpreted

Search Results opic Found

propetly. t the end of How'To
]. 12, Wthh ‘Contents Topic GoTo
[Tse aliases | To Search wt. This could include
alternate na | Cancel ts of text required for
numeric fels
also be used | Previous Match
usually asst
| Hext Match
[efine topic =t a search operation. They

do not have to be the same groups used for Browse operations, but may include Browse

D‘t’f”‘:ﬂﬂﬂ 1'F f:IF'Q'iT’F'l"q .I':Il. fﬁﬂ‘il" At 1"‘|F" ‘if‘ll"hh"’qF"l"q ‘if‘l 1ntre ‘H"‘l::lﬂ Fahal =l QPﬂfPh:ﬁh1P (s iR T‘1"|P 11568 r’"‘:'F




= [FTINDEX] - Data Types

Search Data Types:

Data Type Humber: 1].4

[0 | [ Cancel_|
- Cancel
DLL Filename: I

| evbrkr2.dil
DLL Boutine Mame:
| FBreakandStemwords |

Stop-Word List Filename:

| uza.stp |_.|

Character Tablez Filename:

| -]

Comment:

Delete H |rea|<.f3-.nd5tem'w'l:urds to uze word stemming | Help




ile Edit Search Help

n
nd

n.-n.ln.lmr\:-hl'l'll]

at
be
but

do
for
from
have
he
in
it




Viewer Topic Editor - CHAP11_4.MVP

Topic Browse Sequence:

|I3r|:|up'|

| [#]

Browse Sequence Number:

Topic Groups:

Groupd

| [#]

Group3

| Inzert Group

| Delete Group

114

Cancel

| Help

| About. .







In the previous chapters you worked with individual features in artificial
demonstrations. Now it’s time to take those features, and other Viewer
capabilities, and produce some real-world examples. This chapter creates
two common types of Viewer applications—a reference application and a
training application—that use techniques that apply to many types of Viewer
applications. In this chapter you create small-scale demonstration or pilot
versions of these applications. These demonstrations are not intended to be
complete. The testing steps and Comment sections discuss issues related to
designing full-scale applications. This approach helps you understand and
appreciate the importance of design decisions.

The reference application is an encyclopedia, although most of the
techniques serve just as well for other references. Reference applications can
cover a wide range of subjects (as in an encyclopedia), or concentrate on a
single subject such as photography, Windows APIs, or music. Microsoft’s
initial Viewer applications are all reference applications—Bookshelf is a set
of reference books, Encarta is an encyclopedia, Cinemania concentrates on
movies, and the Developer Network CDs provide technical material for
developers. Viewer is popular for developing reference applications because
of the powerful tools that are provided for locating information—hot spots
and the other hypertext navigation aids, the keyword index, and the full-text
and author—controlled search functions.

Viewer is also well suited to developing training materials, especially for
use within a company. Besides the information—locating tools used in
reference applications, training materials can make excellent use of pictures
with multiple hot spots (great for letting the user choose part of a form or
CRT screen to study) and animations. Sounds and movies can also be
valuable ways to make certain points. For example, these can demonstrate
dealing with customers or performing physical operations that are difficult to
explain clearly using only text.

As you work on these applications, remember that the techniques you are
using are also appropriate for many other types of applications. For example,
an auto repair manual could let the user click on parts of the auto in a picture
to see a closer view, until a particular part is selected. Hot spots or buttons
could offer suggestions for testing, removal, part numbers, and replacement.

After doing these How—Tos, experiment by adding other features, and
create similar demo or pilot versions of other applications. Remember that
the compiler included with this book limits you to 25 topics in your
document file. Have fun!*



12.1 Howdoll ...

Create a Reference Application?
Complexity: ADVANCED

Problem

I want to create an encyclopedia. Users should be able to locate topics from
an alphabetic list, by category, and by searching for desired words or phrases.
The topics should include pictures, sounds, and movies where appropriate
and available. It should start by offering instructions on using the application
for first-time users.

Technique
The encyclopedia contains a selection of topics in several categories, based
on the picture and movie files available. The Search function provides the
primary method for locating subjects, but a two—level alphabetic menu of
topics is also included. A complete help file is provided, and a chance to read
those instructions is offered when the file is loaded. A new button makes it
easier to copy topic contents to other applications. Note that the files used by
this demonstration require over 36 megabytes of disk space! Most of this is
due to the movie files.

This How—To uses many techniques demonstrated in previous sections. If
you want to review the procedures, refer to the indicated sections:

U Create the standard directories, project file, and document file

(How-Tos 3.1 and 3.2).
Use a graphics hot spot (How—To 4.4).
Display 256—color pictures (How—To 4.6).
Create a greeting topic (How—To 5.10).
Create a button (How—To 6.1).
Create a custom About window (How—To 6.3).
Use multiple files (How—To 7.1).
Play sounds (How—Tos 8.1-8.6).
Play AVI movies (How—To 9.1).
Use fields in searches (How—To 11.2).
Use groups to limit searches (How—To 11.4).

[N enH enHiN anHN enHN e enHN st el el

Steps

First, plan the topics, context strings, topic groups, fields, aliases, and other

design details:

1. Select the topics that provide the lowest level of detail. Descriptions of
all the planned topics, context strings, and files for each topic are shown
in Table 12—-1.

2. Design the supporting topics you know are required. In this demo these
are an initial menu, three submenus (A—K, L-P, Q—Z7), the initial
greeting, and a custom About screen. These topics are also shown in
Table 12—1. Popup topics are designed as they are needed.

Table 12—-1. Planned Topics for How—To 12.1



Category Title Context String Files
American History John F. Kennedy ctx_JFK
kennedy.avi

Martin Luther King ctx MLK
mlkingjr.avi

Theodore Roosevelt ctx TR
roosvelt.avi
Animals Duck ctx_duck
ducks.avi

Elephant ctx_elephant
elephant.avi

Horse ctx_horse
horses.avi
Space Saturn ctx_saturn
saturn.bmp & wav

Shuttle ctx_shuttle
liftoff.avi

Sun ctx_sun
solar.bmp & wav
Music Guitar ctx_guitar
guitar.mid

Piano ctx_piano
piano.mid

Ragtime ctx_ragtime
ragtime.mid

Rock Music ctx_rock rock.mid
Support Initial Menu contents

Submenu 1 menu_ak

Submenu 2 menu_Ip

Submenu 3 menu_qz

Initial Greeting ctx_greet

About Screen ctx_about

A topic group is needed for each of the categories of detail topics

(American History, Animals, Music, and Space). These groups are used
for both the Browse and Search operations.

One field, containing topic titles, is required. The standard All Text field
is always created if any other text fields are used. No aliases or other
special features are required.

Next, prepare the directories and files:
5. Use the Windows File Manager to create your project directory,

VIEWERHT\CHAP12 1, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP12 1. You create
these four directories for all projects, even if some are not needed.

Use the File Manager to copy the picture, sound, and movie files from

the appropriate VIEWERHT\HOWTOS\CHAP12\CHAP12 1

subdirectories on the CD—ROM to the corresponding VIEWERHT\



CHAPI12 _1 subdirectories on your hard drive. The wave files are in the
CHAP12 _1 directory, not the SOUNDS subdirectory, and must be copied
to the corresponding directory on your hard drive. The commands used to
play these files do not support paths—the files must be in the same
directory as the MVB file.

Use the File Manager to copy VWRHELP.MVB from the MVHLPUSA
subdirectory of your Viewer directory (usually MVPUBKIT) to your
project directory, VIEWERHT\CHAP12 1. Copy the USA.STP file
similarly, from the MVTOOLS subdirectory.

Use Project Editor to create a new project file in your VIEWERHT\
CHAPI12 1 directory. Enter the name of your document file as TEXT\
CHAP12 1.RTF.

Now enter the necessary definitions in the project file:

9.

10.

11.

12.

13.

14.

15.

16.

Choose Window Definitions from the Section menu, then click on the
Properties button. Enter How-To 12.1 as the Window Caption. Use the
System Control menu box to close the Window Properties dialog box,
then click on OK.

Choose Title Options from the Section Menu, and enter contents in the
Contents Topic field, and Copyright (C) 1993 your name in the
Copyright field. Click on OK.

Choose Config from the Section menu, and paste in an Appendltem
command. Select mnu_help from the pull-down list for the MenulD
field, change the NewItemID to “mnu_about_demo', change the
ItemCaption to ~About &How-To 12.1', and change the Command to
"{vfld137438953483}PopuplD{vfld-9079242005371944960}
(gchPath,"ctx_about")". Click on OK.

Paste in another AppendItem command, and select mnu_help as the
MenulD again. Change NewltemID to “mnu_help', ItemCaption to
“Using &Viewer', and Command to
“JumplID("vwrhelp.mvb","HelpMain")'. Click on OK.

Paste in an InsertButton command, and enter “btn_copy' as the
ButtonID and * &Copy' as the button caption. Select ‘CopyTopic()' from
the pull-down list for the Command field, and enter 6 as the button
position. Click on OK.

Paste a JumpID command into the end of the Config script. Edit the
command, and enter qchPath in the TitleFile field, one space in the
WindowName field, and “ctx_greet' (with single quotes) in the Context
field. Click on OK in each dialog box. Figure 12—1 shows the complete
configuration script.

{ewc vwrht2, TsTextButton, "Figure
121 %21"[Macro=JI( viewerht. mvb>SecWin', ‘figl2 1")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Choose FTINDEX from the Section menu, select the Words search data
type, and choose USE.STP as the stop word file. Click on OK.

Select Groups from the Section menu, then click on New to create the



first group. Change the name to AmHist and the title to American
History. Leave the Searchable checkbox selected.

17. Click on New to create another group, and change the name to Animals
and the title to Animals. Click on New again, and enter Space in the
name and title fields. Click on New once again, and enter Music in the
name and title fields. Click on OK.

18. Choose Searchdlg from the Section menu, and click on the New button to
create a new field. Change the Title field to All Text, and the Search
Field Number to O.

19. Click on New again, and enter Subjects as the Title, and ww10 as the
Word Wheel Subfilename. Leave all other fields unchanged and click on
OK.

20. Save the updated project file.

Next create the support topics:

21. Use Project Editor to start Word and create your document, and create a
new topic with context string contents and title Table of Contents. Be
sure to delete the page break that is created before your topic.

22. Enter the following text using the Times New Roman font, 20 point size,
and boldface:

This is the main menu. Click on the range of subjects below that
contains the subject you want:

23. Insert a few blank lines, then create a hot spot with the text Aardvark—
King that jumps to context string menu_ak. Continue to use the same
character format as in step 21 throughout this topic.

24. Insert a blank line, then create a similar hot spot with text Label—Puzzle
and context string menu_Ip.

25. Insert a blank line, then create a similar hot spot with text Quack—Zulu
and context string menu_gz.

26. Create a new topic with context string menu_ak and title Menu A—K.

27. Enter the following text in 16—point Times New Roman, centered:
CLICK ON THE DESIRED SUBJECT:

28. Insert a couple of blank lines, then three columns of topics as follows.
Continue using 16—point Times New Roman, with paragraph format
option Keep Lines Together. (This prevents word wrapping.) Use tabs to
line up the columns.

Aardvark Doodle Guitar

Abdicate Duck Habitat

Advertise Ear Horse

Badge Elephant Human

Benefactor  Error Incurable

Blunder Feather Ivory

Cat Flash Jab

Compensate Funny Kennedy, John F.
Curtail Gab Kennedy, Robert
Defect Greek King, Martin Luther

29. Select the word duck, and create a hot spot that jumps to ctx_duck.



Create similar hot spots so that Elephant jumps to ctx_elephant, Guitar
jumps to ctx_guitar, Horse jumps to ctx_horse, John F. Kennedy jumps
to ctx_JFK, and Martin Luther King jumps to ctx_MLK.

30. Restore the normal paragraph formatting, and insert a couple of blank
lines. Create a centered hot spot with text Return to Main Menu that
jumps to contents. This topic should look like Figure 12-2.

{ewc vwrht2, TsTextButton, "Figure
12i; 42" [Macro=JI(" viewerht.mvb>SecWin', ‘figl2 2")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

31. Create a new topic with context string menu_|p and title Menu L—P.

32. Use the same formatting and heading line as in steps 26 and 27 and enter
the following list of topics:

Label Move Offer

Let Mud Opposite
Lift Navigate Ordeal
Loop Neat Overcome
Love Nice Pact

Luck Noose Passage
Man Novice Petite
Mammoth Numb Piano
Misuse Oar Pluck
Moon Obstruct Puzzle

33. Select Piano and create a hot spot that jumps to ctx_piano.

34. Restore the normal paragraph formatting, and insert a couple of blank
lines. Create a centered hot spot with text Return to Main Menu that
jumps to contents.

35. Create a new topic with context string menu_qz and title Menu Q—Z.

36. Use the same formatting and heading line as in steps 26 and 27 and enter
the following list of topics:

Quack Secede Umbra
Quarrel Shuttle Understand
Quest Speculate Utopia

Quit Sun Vacant
Ragtime Tact Vegetable
Reaping Tendon Waffle
Rock Music  Thief Wrench
Roosevelt, T Tontine X-Ray
Ruler Trademark Yelf)

Saturn Ultimate Zulu

37. Make hot spots such that Ragtime jumps to ctx_ragtime, Rock Music
jumps to ctx_rock, T' Roosevelt jumps to ctx_TR, Saturn jumps to
ctx_saturn, Shuttle jumps to ctx_shuttle, and Sun jumps to ctx_sun.

38. Restore the normal paragraph formatting, and insert a couple of blank
lines. Create a centered hot spot with text Return to Main Menu that
jumps to contents.

39. Create a new topic with context string ctx_greet and title Greeting.
Enter the text Welcome to the Demo Encyclopedia.

40. Insert a few blank lines, then create a hot spot with text Click here to
read instructions for using this application, and jumping to context



string HelpMain in the VWRHELP.MVB file.

41. Insert a few blank lines, then create a hot spot with text Click here to
display the Main Menu, and jumping to context string contents.

42. Create a new topic with context string ctx_about and no title. Enter the
following text:

Demo Encyclopedia, created in
How-To 12.1 in the book

Microsoft Multimedia Viewer How-To
by Stephen Pruitt

Next create the topics that use AVI movies:

43. Create a new topic with context string ctx_JFK and title John F.
Kennedy. Create a Browse group footnote for the AmHist group. Leave
the sequence number blank for the sake of simplicity. Enter the topic title
(John F. Kennedy) as a heading line, using 14—point type, and define
that line as a search field (Subjects). Insert a few blank lines, then insert a
Viewer multimedia command that specifies MCI device AVIVideo, file
name MOVIES\KENNEDY.AVI, position Left, and caption Watch a
movie. All other options should remain in the default values. Insert a
couple of blank lines, then enter the following text:

John F. Kennedy was the 35th President of the United States. He was
inaugurated in January 1961 and was assassinated in Dallas, Texas
on November 22, 1963. He was the first Roman Catholic to be
_elelcégc% President. The Berlin Wall was built during his administration,
in .

This topic should look like Figure 12—3 in your document.

{ewc vwrht2, TsTextButton, "Figure
121 43" [Macro=JI(" viewerht.mvb>SecWin', "figl2 3')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

44. Create a topic similar to the previous with context string ctx_MLK, title
and heading Martin Luther King, and file name MOVIES\
MLKINGJR.AVI. Define the heading as a Subjects search field. Use the
same movie caption as in step 43. Create a Browse group footnote for the
AmHist group without a sequence number. Enter the following text:

Martin Luther King was a prominent leader of the American civil
rights movement until his assassination on April 4, 1968. His
ﬁhilosophy stressed non-violence and the dignity and common
umanity of all people. He was the leader of voter registration drives
throughout the South, and the civil rights march on Washington in
1963. He delivered his famous “l Have a Dream” speech at a rally in
\ll\gaGSEington during that march. He received the Nobel Peace Prize in

45. Create a topic similar to the previous one with context string ctx_TR,
title and heading Theodore Roosevelt, and file name MOVIES\
ROOSVELT.AVI. Define the heading as a Subjects search field. Use the
same movie caption as in step 43. Create a Browse group footnote for the
AmHist group without a sequence number. Enter the following text:

Theodore Roosevelt was the 26th President of the United States,



from 1901 until 1909. He expanded the powers of the federal
government in conflicts between Big Business and Big Labor by
advocating the concept of a public interest. He used executive
ﬁowers to bring suits against a number of business trusts. He also

ad Iec?islation passed to control railroad rates and begin inspection
of food and drugs. Under his leadership, vast expanses of federal
lands were set aside for conservation.

46. Create a topic similar to the previous one with context string ctx_duck,
title and heading Duck, and file name MOVIES\DUCKS.AVI. Define
the heading as a Subjects search field. Use the same movie caption as in
step 43. Create a Browse group footnote for the Animals group without a
sequence number. Enter the following text:

Ducks are waterfowl in the family Anatidae, which includes geese
and swans. Ducks are found throughout the world. They are
identified by their webbed feet and flattened bills.

47. Create a topic similar to the previous one with context string
ctx_elephant, title and heading Elephant, and file name MOVIES\
ELEPHANT.AVI. Define the heading as a Subjects search field. Use the
same movie caption as in step 43. Create a Browse group footnote for the
Animals group without a sequence number. Enter the following text:

Elephants are large mammals that live in Africa, India, and southern
Asia. They have been domesticated and trained to carry heavy
loads. They live in herds and are highly intelligent. The Asian
elephant has smaller ears and a smaller body than its African
counterpart. Female Asian elephants do not have tusks.

48. Create a topic similar to the previous one with context string ctx_horse,
title and heading Horse, and file name MOVIES\HORSE.AVI. Define
the heading as a Subjects search field. Use the same movie caption as in
step 43. Create a browse group footnote for the Animals group without a
sequence number. Enter the following text:

Horses are a hoofed mammal belonging to the family Equidae. They
have a long association with man and have been used for transport,
hauling, and sport. Selection and breeding have resulted in a variety
of types, each suited to a particular function.

49. Create a topic similar to the previous one with context string
ctx_shuttle, title and heading Shuttle, and file name MOVIES\
LIFTOFF.AVI. Define the heading as a Subjects search field. Use the
same movie caption as in step 43. Create a Browse group footnote for the
Space group without a sequence number. Enter the following text:

The shuttle is America's first reusable spacecraft. It is used for both
government and private commercial projects. Examples of shuttle
missions include:

March, 1989 - Dijscovery launched a Data Relay satellite and tested a
model of a heated pipe radiator for the planned space station.

May, 1989 - Atlantis launched the Magellan radar mapper to Venus.
October, 1989 - Atlantis launched tha Galileo space probe that
travelled to Jupiter by way of Venus.

Next create the topics that use bitmaps and wave sound files:

50. Create a new topic with context string ctx_saturn and title Saturn.
Create a Browse group footnote for the Space group, without a sequence
number. Enter the title text as a heading line, using 14—point type, and



define that line as a search field (Subjects). Insert a few blank lines, then
insert a Viewer ewX picture command. Select the Any Display file folder
tab, then choose file PICTURES\SATURN.BMP, store file in Baggage,
dither picture on 16—color displays, position Left, and type the centered
caption Click on picture to play music. Paste in an MCICommand
command, edit the MCI parameters to ~saturn.wav', and select Play
from the MCI Command pull-down list. All other options should remain
in the default values. Insert a couple of blank lines, then enter the
following text:

Saturn is the sixth planet from the sun. It has a diameter of 72,000
miles and revolves around the sun once every 29.5 years. It is
famous for the series of thin, flat rings that circle it.

51. Repeat the procedure in step 50 to create a topic about the Sun. Enter
ctx_sun as the context string, and Sun as title and heading. Select file
PICTURES\SOLAR.BMP, and play the “solar.wav' sound file. All other
options are the same as in step 50. Enter the following text:

The Sun is a star, just like most of the tiny points of light you see in
the sky. The picture shows a phenomenon called solar prominences
clearly. The sun is the center of our solar system, providing light and
heat to the planets.

Next create the topics that use MIDI sound files:

52. Create a new topic with context string ctx_guitar and title Guitar.
Create a Browse group footnote for the Music group, without a sequence
number. Enter the title text as a heading line, using 14—point type, and
define that line as a search field (Subjects). Insert a few blank lines, then
insert a Viewer multimedia command that specifies MCI device
sequencer, file name SOUNDS\GUITAR.MID, position Left, and caption
Play music. Use a custom controller containing only the Play/Pause
button and no slider. All other options should remain in the default
values. Insert a couple of blank lines, then enter the following text:

The guitar is a stringed instrument played by plucking. The long
finger board, or neck, of the guitar has a series of small raised strips
of metal called frets. The guitar is based on an invention 5,000 years
a?o in Egypt during the days of the pharoahs. The rise in popularity
of rock music in the 1950s and 1960s subjected many households to
the sounds of a teenage would-be guitar superstar.

53. Create a similar topic with context string ctx_piano, title and heading
Piano, and playing the SOUNDS\PIANO.MID file. Define each heading
as a Subjects search field. All other options should be the same as in step
52. Enter the following text:

The piano is a keyboard instrument, based on a device invented by
Bartolommeo Cristofori, the curator of musical instruments for the
Medici family in Florence, Italy. Its popularity results from its great
versatility, including the range of octaves and variations in volume
from very soft to very loud. In addition, it lends itself to the
expression of many musical styles, including classical, jazz, ragtime,
blues, and rock and roll.

54. Create a similar topic with context string ctx_ragtime, title and heading
Ragtime, and playing the SOUNDS\RAGTIME.MID file. Define each
heading as a Subjects search field. All other options should be the same



as in step 52. Enter the following text:

Ragtime is a style of piano jazz that was very popular in the early
1900s. The music emrploys a strongly accented syncoEated pattern
over a strong steady left hand beat. The rhythm is jerky or “ragged,”
hence the name. The basic rhythm makes frequent use of a pattern
of sixteenth-eighth-sixteenth notes. The most famous ragtime

ianis_,lg and composer was Scott Joplin (1869-1917), a black pianist
rom Texas.

55. Create a similar topic with context string ctx_rock, title and heading
Rock Music, and playing the SOUNDS\ROCK.MID file. Define each
heading as a Subjects search field. All other options should be the same
as in step 52. Enter the following text:

Rock has been adpopular musical style since the 1950s. It is
commonly played using the guitar, electronic synthesizer, or piano. It
is characterized by a strong, driving beat. There are many styles of
roclk music, from the early “bubble gum” to the later heavy metal
style.

Now add some inter—topic jumps and popups:

56. Make the words guitar and piano in the Ragtime and Rock Music topics
hot spots that jump to context strings ctx_guitar and ctx_piano. Make the
terms Ragtime and Rock in the Guitar and Piano topics hot spots that
jump to context strings ctx ragtime and ctx_rock.

57. Locate terms in the detail topics that would be unfamiliar to some users.
Use civil rights movement (under Martin Luther King), prominences
(under Sun), and frets (under Guitar). Make each term a popup hot spot
with a suitable context string. Create topics with those context strings, no
titles, and the following text:

Civil rights movement:
The American civil rights movement had as its goal securing
equal rights for black Americans. It worked to eliminate forced
segregation, voting rights abuses, and other forms of
discrimination.

Prominences:
Solar prominences are bursts of solar material that shoot out
from the surface, as a result of uneven heating and combustion
within the sun.

Frets:
Frets mark off intervals of half steps, helping the player to find
the correct pitch. The fingers press down on the strings just
above the frets.

Figure 12—4 shows a section of the document file.

{ewc vwrht2, TsTextButton, "Figure
121 54" [Macro=JI(" viewerht.mvb>SecWin', ‘figl2 4')] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Now finish up and try it out:
58. Save the document file as usual, and save the project file again to make
sure that all changes are saved, then compile and test the application.

59. Try jumping to the help file, shown in Figure 12-5. Would a user know



how to return to the main aplication?

{ewc vwrht2, TsTextButton, "Figure
12i; 45" [Macro=JI(" viewerht.mvb>SecWin', ‘figl2 5")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

60. Go to each of the detail topics through the menus. Would a user know
how to use the multimedia controller buttons? Did you figure out how to
stop the music in the Saturn and Sun topics? (The solution is to leave the
topic.) Would a user figure that out? Figure 12—6 shows the topic about
the Sun.

{ewc vwrht2, TsTextButton, "Figure
12i;26"[Macro=JI(" viewerht.mvb>SecWin', ‘figl2 6")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

61. Use the browse buttons to move within general topic categories. How
would a user know what these buttons do?

62. Use the Search operation, and search by category. Select the Subjects
category, and look at the pull-down list of subjects shown in Figure 12—
7. Do you really need both this and the initial menus? What other
categories would be useful?

{ewc vwrht2, TsTextButton, "Figure
12i; 47" [Macro=JI(" viewerht.mvb>SecWin', ‘figl2 7")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

In steps 1 through 4 you design the basic components of the application. This
makes the authoring process easier and helps you avoid forgetting anything
important. In steps 9 and 10 you define the window caption, copyright
information, and contents topic.

Steps 11 and 12 add entries to the standard Help menu. One displays a
custom About window and the other displays the Viewer help information
from a separate MVB file. The topic displayed in this window is created in
step 42.

Step 13 defines a new button that copies the current topic to the Windows
Clipboard.

Step 14 causes a greeting topic to be displayed when the application is
loaded.

Step 15 applies the standard stop word file, to eliminate common words
from the search index.

The topic groups are defined in steps 16 and 17. These groups are used for
browsing and to limit search operations.

Steps 18 and 19 define the search categories (also known as fields).

The main menu and submenus are created in steps 21 through 38. These
are simple jump hot spots arranged in columns. The greeting topic is created



in steps 39 through 41. This uses hot spots to allow the user to jump to the
help file or to the main menu. This topic is never displayed again during one
execution of the application.

The topics that use AVI movies are created in steps 43 through 49. The
movie caption helps to tell the user what the controller buttons do. All of the
subject topics have browse footnotes without sequence numbers. This causes
the topics within each group to be displayed in their physical order in the file
when the browse buttons are used.

Steps 50 and 51 create topics that have 256—color pictures and sound files.
Dithering is used to display the pictures on 16—color systems best. If the user
clicks on the picture, a command is executed to play a sound file.

Steps 52 through 55 create topics that play MIDI sound files using the
Viewer multimedia embedded window command. A controller containing
only a Play/Pause button is used to show the effect of a minimal controller.

Jumps between related topics are added in step 56, and popup hot spots are
added in step 57.

Comment

The source files used to create the Viewer help file are included with Viewer
and on the CD-ROM disk enclosed with this book. They can be modified to
reflect the techniques included in your application. You can compile them
into your MVB file if desired.

Group entry and exit command scripts can be used to simplify the use of
the help topics, including returning to the main application. Viewer
commands could be executed when entering or leaving the help topics to
change and restore the contents topic, for example. A button could be added,
while in the help topics, that jumps to the application’s main menu. The help
topics could be displayed in a secondary window by using techniques
demonstrated in How—Tos 5.6 and 6.9.

The {vfld137438953482}browse sequence{v{ld280933810831360}
number was left blank in each topic. This causes the topics to be displayed in
their physical order in the file. A real reference would use sequence numbers
that display the topics in alphabetic order or some other meaningful
sequence.

A short summary of the user interface would be helpful. This would be
offered in the initial greeting and the Help menu. Using a consistent interface
in all subject topics makes it much easier to explain the functions to the user.



12.2 Howdoll ...

Create a Training Package?
Complexity: ADVANCED

Problem

I want to create a training package. It must be very easy to use, requiring
minimal instructions. The users must have very little control over what topics
are displayed. It should include pictures, sounds, and animations where
appropriate.

Technique
This training package teaches new employees how to answer the telephone as
a switchboard operator, receptionist, or department secretary. There are four
sections—Introduction, Basics, Holding Calls, and Taking Messages. It
includes a custom interface, displayed in a regular pane alongside the training
material, that replaces the standard Viewer menus and buttons. Users are
offered a brief description of how to use the training package when the file is
loaded. The standard Search, Browse, History, and other navigational aids are
not used.

A standard message pad is shown, with each portion selectable as a hot
spot that displays instructions for filling in that part of the form.

This How—To uses many techniques that were demonstrated in previous
sections. Refer to the following sections to review the procedures:

U Create the standard directories, project file, and document file

(How—Tos 3.1 and 3.2).
Use multiple hot spots in a picture (How—To 4.5).
Use a table to display information (How—To 5.9).
Display a greeting topic (How—To 5.10).
Use a graphic interface in a regular pane (How—Tos 6.6 and 6.8).
Play sounds automatically (How—To 8.3).
Play a spoken greeting (How—To 8.4).
Play an animation (How—To 9.6).

c:-cCc:cCc:CcC:CcC:C:C:

Steps

First, plan the topics, context strings, and other design details:

1. Select the topics that provide the training material, including the popups
used for the message pad. Descriptions of all the planned topics with
their context strings are shown in Table 12-2.

2. Design the supporting topics you know are required. In this demo these
are an initial greeting and the instructions. Four topics contain the custom
interface, each reflecting a different current section of the course. These
topics are also shown in Table 12-2.

Table 12-2. Planned Topics for How—To 12.2

Description Context String

Introduction ctx_intro



Basics ctx_basics
Holding Calls ctx_hold
Taking Messages ctx_message
Message Pad: For ctx pad for
Message Pad: Date/Time ctx_pad_when
Message Pad: Caller ctx pad caller
Message Pad: Of ctx_pad_of
Message Pad: Phone Number ctx_pad phone
Message Pad: Message ctx_pad_message
Message Pad: Signed ctx_pad_signed
Message Pad: Urgent ctx_pad urgent
Message Pad: Checkboxes ctx_pad_boxes
Greeting ctx_greeting
Instructions ctx_instructions

Controls—all
Controls #1

ctx_control_all

ctx_control 1

Controls #2 ctx_control 2
Controls #3 ctx_control 3
Controls #4 ctx_control 4

3. No topic groups are needed because the browse and search operations are
not used in this demonstration. No fields, aliases, or topic titles are
needed for the same reason.

Next, prepare the directories and files:

4. Use the Windows File Manager to create your project directory,
VIEWERHT\CHAP12 2, and the standard subdirectories, TEXT,
SOUNDS, PICTURES, and MOVIES, under CHAP12 2. Create these
four directories for all projects, even if some are not needed.

5. Use the File Manager to copy the picture, sound, and movie files for this
How-To from the appropriate HOWTOS\CHAP12 2 subdirectories on
the CD-ROM to the corresponding VIEWERHT subdirectories on your
hard drive. The wave files are in the CHAP12 1 directory, not the
SOUNDS subdirectory, and must be copied to the corresponding
directory on your hard drive. The commands used to play these files do
not support paths—the files must be in the same directory as the MVB
file.

6. Use the Segmented Hot Spot Editor to create the multiple hot spot file
MSGPAD.SHG from MSGPAD.BMP in the PICTURES subdirectory.
Mark each section of the picture corresponding with entries in Table 12—
2 that begin with Message Pad, and define each section as a popup hot
spot that pops up the context string listed. Figure 12—8 shows the check
box section, in the middle of the form, being defined as a hot spot that
pops up context string ctx_pad_boxes.

{ewc vwrht2, TsTextButton, "Figure
121;%48"[Macro=JI(" viewerht.mvb>SecWin', ‘figl2 8')] [Font="Arial"



7.

/S12/B4] /W100 /H40/B1/D2}

Use Project Editor to create a new project file in your VIEWERHT\
CHAPI12_2 directory. Enter the name of your document file as TEXT\
CHAP12_2.RTF.

Now enter the necessary definitions in the project file:

8.

10.

11.

12.

13.

14.

Choose Window Definitions from the Section menu, then click on the
Properties button. Enter How-To 12.2 Demo as the Window Caption,
and set the Use Default Color check box. Click on the Master Pane
button, then clear the Auto—Position check box to allow the master pane
to be resized. Enter 225 in the Left field, and 798 in the Max Width. Use
the System Control menu box to close the Window Properties dialog box.

Click on the Panes file folder tab, then click on New to create a regular
pane named Panel. Click on the Properties button, and change the pane
name to Controls and select (none) for the Border. Click on the
Windows button to display the Pane Associations dialog box, select the
Show in Window check box, then click on the Preview button to display
the window layout. Drag the edges of the Controls pane to fill the left
side of the window, then use the System Control menu box to close the
preview window. Figure 12—9 shows the pane layout. Close the Window
properties dialog box the same way, then click on OK to close the
Window Definitions dialog box.

{ewc vwrht2, TsTextButton, "Figure
12i; 29" [Macro=JI(" viewerht.mvb>SecWin', ‘figl2 9")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

Choose Title Options from the Section Menu, and enter ctx_greeting in
the Contents Topic field. Leave the Copyright field blank because the
About box can’t be displayed in this application. Select PICTURES\
CHAP12_2.ICO as the icon file. Click on OK.

Choose Config from the Section menu. Delete the Std20Menus() and
Std20Buttons() commands by highlighting them and pressing [DEL].

Paste in a RegisterRoutine command, and enter ' mmsystem’ as the
DLLName, “waveOutGetNumDevs' as the function name, and “u="as
the parameter spec.

Paste in another RegisterRoutine command, and enter ~mmsystem' as
the DLLName, “sndPlaySound' as the function name, and ~Su' as the
parameter spec.

Paste in another RegisterRoutine command, and enter ~user" as the
DLLName, “MessageBox' as the function name, and “USSu' as the
parameter spec. Figure 12—10 shows the completed configuration script.
Click on OK to return to the main Project Editor window, then save the
updated project file.

{ewc vwrht2, TsTextButton, "Figure
12i;'210"[Macro=JI( viewerht. mvb>SecWin', "figl2 10")] [Font="Arial"



/S12/B4] /W100 /H40/B1/D2}

Now create the supporting topics:

15.

16.

Use Project Editor to start Word and create your document, and create a
new topic with context string ctx_greeting. Be sure to delete the page
break that is created before your topic.

Create a topic entry footnote, and type in the following command, all on
one line:

IfThenElse(waveOutGetNumDevs(), "sndPlaySound( badans.wav', 1",
"{vfld137438953483}MessageBox{vfld-9078975914968088576}
(hwndApp, " Your system does not support sound', "ERROR’, 0)")

17.

18.

19.

Click on OK to return to the document. Enter the text Answering the
Telephone, using 16—point Arial type centered in the top line of the
topic.

Insert a few blank lines, then create a table with one row and two
columns. Select the first column, then choose Column Width from the
Table menu. Set the column width to 4 inches, and the space between to
1 inch. Click on the Next Column button, and set the width of the second
column to 2 inches.

Enter the following text in the left cell of the table:

What did you think?

Hard to understand? If you were calling, how would you feel about a
company that has someone answering the phone that way? Do you
want to talk with this person? Would you trust a person who gives
this impression to take your message properly?

This course teaches you how to answer the phone so that you make
a good impression on the caller, and handle calls effectively.

20.

21.

22.

23.

In the right cell insert a Viewer ewX picture command to display file
PICTURES\DESKTOP.BMP. Use character position and no caption.
Check the Store Picture in Baggage check box.

Insert a few blank lines, then enter the text CLICK TO HEAR A PROPER
ANSWER using 14—point type, and centered. Make this text a hot spot
and paste in an MCICommand. Enter " !correct.wav' as the MCI
parameters and ~play' as the MCI command. Click on OK in each dialog
box to return to the document.

Insert a couple of blank lines, then create two text hot spots on one line.

The first says CLICK FOR INSTRUCTIONS, and jumps to context string
ctx_instructions. The second says CLICK TO PROCEED, and jumps to
context string ctx_intro. The completed topic in the document is shown
in Figure 12—-11.

{ewc vwrht2, TsTextButton, "Figure
12i;'4211"[Macro=JI(" viewerht.mvb>SecWin', ‘figl2 11")]
[Font="Arial" /S12/B4] /W100 /H40/B1/D2}

Create a new topic with context string ctx_instructions. Create a topic
entry PanelD command and enter qchPath as the title file, one space as



the window name, ctx_control_all as the context string, Controls as the
pane name, and O as the value for PrintTabCopyOrder.

24. Enter the text How to Use This Course, using 16—point Arial type
centered in the top line of the topic.

25. Insert a few blank lines, then insert the topic text from a file by choosing
File from Word’s Insert menu, then selecting the CHAP12 2\
INSTRUCT.DOC file.

Now create the topics containing the custom interface controls:

26. Create a new topic with context string ctx_control_all. Insert a Viewer
ewX picture command, specify PICTURES\INTRON.BMP as the file,
and select the Store Picture in Baggage check box. Paste in a JumpID
command and enter qchPath as the file name, one space for the window
name, and ctx_intro for the context string. Click on OK.

27. Insert one blank line, then insert a Viewer ewX picture command.
Specity file PICTURES\BASICSN.BMP and Store Picture in Baggage.
Paste in a JumpID command and enter qchPath as the file name, one
space for the window name, and ctx_basics for the context string. Click
on OK.

28. Insert one blank line, then insert a Viewer ewX picture command.
Specity file PICTURES\HOLDN.BMP and Store Picture in Baggage.
Paste in a JumpID command and enter qchPath as the file name, one
space for the window name, and ctx_hold for the context string. Click
on OK.

29. Insert one blank line, then insert a Viewer ewX picture command.
Specity file PICTURES\MSGN.BMP and Store Picture in Baggage.
Paste in a JumpID command and enter qchPath as the file name, one
space for the window name, and ctx_message for the context string.
Click on OK.

30. Insert one blank line, then insert a Viewer ewX picture command.
Specity file PICTURES\EXITSML.BMP and Store Picture in Baggage.
Paste in an Exit command. This does not take any parameters, and does
not need to be edited. Click on OK. The completed topic is shown in
Figure 12-12.

{ewc vwrht2, TsTextButton, "Figure
121 %212"[Macro=JI(' viewerht.mvb>SecWin', "figl2 12")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

31. Create a new topic with context string ctx_control_1. Repeat steps 26
through 30 except use file INTROA.BMP in the first picture.

32. Create a new topic with context string ctx_control_2. Repeat steps 26
through 30 except use file BASICSA.BMP in the second picture.

33. Create a new topic with context string ctx_control_3. Repeat steps 26
through 30 except use file HOLDA.BMP in the third picture.

34. Create a new topic with context string ctx_control_4. Repeat steps 26
through 30 except use file MSGA.BMP in the fourth picture.



Now create the training topics:

35. Create a new topic with context string ctx_intro. Create a topic entry
footnote and paste in a PanelD command. Enter qchPath (without
quotes) as the title file, one space for the window name, ctx_control_1
as the context string, Controls as the name of the pane, and O as the
PrintTabCopyOrder value

36. Enter the text You Are the Company!, using 16—point Arial type,
centered in the top line of the topic.

37. Insert a couple of blank lines, then insert a Viewer multimedia command.
Enter GDANnim as the MCI device, select the MOVIES\
COMPANY.AWA file, select the text aligned position check box, and
select the Looping and Auto—start playback options check boxes. Clear
the Show Controller checkbox. Center the command text so that the
resulting command will be centered.

38. Insert a couple of blank lines, then the following text:

When a customer calls for the first time, your answer forms their first
impression of the company. You are the company! Think about how
you react to the way different companies answer the phone.

Try to be...

COURTEOQOUS - be polite, and never argue

CHEERFUL - a friendly voice is always pleasant

CONFIDENT - convince callers you'll handle the request properly
CLEAR - be sure the caller understands you

39. Create a new topic with context string ctx_basics. Create a topic entry
footnote and paste in a PanelD command. Enter gchPath (without
quotes) as the title file, one space for the window name, ctx_control_2
as the context string, Controls as the name of the pane, and O as the
PrintTabCopyOrder value.

40. Enter the text Basic Concepts, using 16—point Arial type, centered in
the top line of the topic.

41. Insert the text for this topic into your document from a separate file by
choosing File from Word’s Insert menu, then selecting the CHAP12 2\
BASICS.DOC file.

42. Create a new topic with context string ctx_hold. Create a topic entry
footnote and paste in a PanelD command. Enter gchPath (without
quotes) as the title file, one space for the window name, ctx_control_3
as the context string, Controls as the name of the pane, and O as the
PrintTabCopyOrder value

43. Enter the text The Call on Hold, in 16—point Arial type, centered in the
top line of the topic.

44. Insert a few blank lines, then the following text:

If you put a caller on hold while waiting for the desired person to
become available, keep checking to see if the caller still wants to
hold. Think how you would feel if you decided to give up and leave a
message, but no one came back to give you that chance.

You should also offer to transfer the caller to someone else who



might be able to assist him or her.

45. Create a new topic with context string ctx_message. Create a topic
entry footnote and paste in a PanelD command. Enter gchPath (without
quotes) as the title file, one space for the window name, ctx_control 4
as the context string, Controls as the name of the pane, and O as the
PrintTabCopyOrder value

46. Enter the text Taking a Message, in 16—point Arial type, centered in the
top line of the topic.

47. Insert the following text:

Fill out a “While You Were Out” message form for every call where
the caller leaves a message or identifies himself or herself.

The standard form is shown below. Click on each portion of the form
to get an explanation of that section.

48. Insert a Viewer ewX picture command with file PICTURES\
MSGPAD.SHG. Select the Store Picture in Baggage check box and text
aligned position. Center the command text so that the resulting command
will be centered.

Next create the message pad popup topics:
49. Create a new topic with context string ctx_pad_for, and enter the
following text:

Enter the name of the person this message is for. Make sure it's
clear, so you aren’t wondering later “Which Don was that for?”

50. Create a new topic with context string ctx_pad_when, and enter the
following text:
Enter the date and time you received the call.

51. Create a new topic with context string ctx_pad_caller, and enter the
following text:

Enter the name of the person on the phone here. Make sure you
have the right spelling!

52. Create a new topic with context string ctx_pad_of, and enter the
following text:
Enter the name of the company the caller represents.

53. Create a new topic with context string ctx_pad_phone, and enter the
following text:

This is the number to call back to reach the person on the phone. Try
to get a number even if the caller says “He knows it.”

54. Create a new topic with context string ctx_pad_message, and enter the
following text:

Ask the person on the phone if he or she wants to leave a message.
If so, write the message here. Make sure it’s clear, and make sure of
any unfamiliar words.



55. Create a new topic with context string ctx_pad_signed, and enter the
following text:

Enter your name here. If the person getting this message has any
questions, this lets him or her know who took the message.

56. Create a new topic with context string ctx_pad_urgent, and enter the
following text:

Put a checkmark in this box if the caller says this message is urgent.
Make_bslure you get this message to the right person as quickly as
possible.

57. Create a new topic with context string ctx_pad_boxes, and enter the
following text:

Place checkmarks where appropriate. Is the caller expecting a call
balclk, or will he or she call again? Was this call returning a previous
call?

58. Save the document and project files, and compile and test the application.
The first course section is shown in Figure 12—-13.

{ewc vwrht2, TsTextButton, "Figure
12i;'213"[Macro=JI( viewerht. mvb>SecWin', "figl2 13")] [Font="Arial"
/S12/B4] /W100 /H40/B1/D2}

How It Works

In the first three steps you design the application. This includes deciding
what topics are needed, choosing a context string for each topic, and
designing the user interface. The supporting topics, topic groups, fields, and
other components are determined at the same time, based on the design
decisions.

A multiple hot spot picture is created in step 6 that is used later, in one of
the application’s topics.

In steps 8 and 9 the master pane is resized and a regular pane for the user
interface is created.

The standard menus and buttons are eliminated in step 11, and external
routines are defined in steps 12 through 14.

The greeting topic is created in steps 15 through 22. Step 16 causes a
sound file to be played automatically if the computer system supports playing
sounds, and displays an error message otherwise. Steps 18 through 20 use a
table to arrange text and a picture in the middle of the topic. Step 21 creates a
text hot spot that causes a sound file to be played.

A topic containing a short set of instructions is created in steps 22 through
25. Text from a separate file is inserted into the topic in step 25.

Steps 26 through 30 create a topic containing the custom interface
displayed with the instructions, and steps 31 through 34 create the interface
topics displayed with the four sections of this course. The interface uses a
picture hot spot for each subject. A distinctive picture is displayed for the
active subject, and the other three subjects are represented by standard
pictures. Each of these pictures are hot spots that jump to the appropriate



topic. A hot spot picture is also included to exit the application.

The topic containing the first subject is created in steps 35 through 38. A
topic entry command in defined in step 35 that displays the proper custom
interface topic in the regular pane, and a multimedia controller that plays an
animation is created in step 37. This displays the animation automatically,
and keeps repeating it as long as this topic is displayed. There aren’t any
control buttons, so it can’t be stopped.

The next subject’s topic is created in steps 39 through 41. It uses a topic
entry command just as in the previous topic, and text that is inserted from
another file. The third subject’s topic is created similarly in steps 42 through
44. The text for this topic is entered directly.

The topic for the last subject is created in steps 45 through 48. It is similar
to the previous topics, except that it displays a picture with multiple hot
spots. The topics that are displayed in popup windows when those hot spots
are clicked are then created in steps 49 through 57.

Comment

This How—To also demonstrates inserting text from another file into an
application. This is a common and valuable technique, because useful
material may be available in another source. Copying and pasting through the
Windows Clipboard can work equally well. You can even copy material from
Windows Help or Viewer applications this way! Be certain that you only
copy material that you have the right to use. All material should be presumed
to be copyrighted and restricted unless you created it or the material states
that it can be redistributed or published without restriction.

A multiple hot spot picture, such as in the Holding Calls section, might
serve as the main menu of a course (or a section of a course). It could show a
form, an application screen, a piece of equipment, or any other subject.

Careful use of movies, animations, and sounds can make a training course
more interesting and educational. The examples of proper and improper
telephone answering in this demonstration wouldn’t be nearly as effective if
the user just read them in text!



12.3 Tips and Tricks

= How-To 12.1 incorporates the sample Viewer help file
(VWRHELP.MVB) that is installed with Viewer in the MVHLPUSA
subdirectory. To keep the demonstration simple, this file is included
exactly as it is distributed. In a real application the file’s contents would
be customized to reflect only the appropriate techniques. All of the
source files used to create this file are included in the same directory.

= Be careful not to be annoying with sounds or other effects that can’t be
avoided. It can be very easy to overdo these effects. Consider the
environment where your application might be used. It might be courteous
to offer a menu option to supress sounds, as demonstrated in How—To
6.2.

= Large applications should be compiled with maximum compression to
reduce space requirements. Compression can also provide faster
operation if your application will execute from a CD-ROM.

= Viewer’s Technical Reference shows how to start multiple instances of
Viewer, for operations like the help function in How—To 12.1. The
electronic book on the enclosed CD—ROM uses this for help and the
Viewer demos.



[CONFIG] - Configuration Script

Configuration Scrpt:

| Edit Commarsd. I | Pazle Command.._ I

[Etd20b ez |L*
Srd20Buitarsl) -
RegzorBactineg"rvbrip2”, "CopyBmp’ | o=l 55"
Heg=eHn hnel "mvmrd? " WU nmmand™, " 12557
RedgserRovtine " myftsuiz’, "SeachDidcg’, "5 1M
MNegsarllacting -t 3=, 'Y
Cethifgchaty’
Lrp=ndliem mnn_kel" rroo_abooe_demc’, "abor S How-"n 02 1 = piNigekPack rke_ahens”
Arpzndllen™ mng bela', e Ve, e g 8iene | o d D" e belp b, "Helpbd cin'l']
InscrtBubonbtn_coov', "WCopy’, CooyTopicl]'. B)
JumnzlDfgeb2ata, “obe_greet|

L.
F | »

| Ok I




MivrosoltWurd - CHAP12_1.RTF -

a| File BEdil View Insert Format  lools lable Window Help

Ak | e

CEE LaE [ EaE B=ERE parE aeE

[Normal | 3] Times New Nonen |[2] 12 [2] [(DIZ] el [E1=1=1=] (2 0] 2] 6] ]
|1 |2 | | |3 |E |F

T |
«3 CTICK ON THE DESIRED STUURIECT: ||
Aurdvark Douile Chlarelx,. gualar
Abdicale Ducketx, duck Heabital
Adverlise Eur Horsecly, horse
Budge Elephantetx, . elephant Human
Benelaclar Error Incurable
Blunder Fealtier Iviory
Cat Flash Jab
Compersate Funy Kennedy, John F ¢ty JFK
Clurtail Gab Kemnedy, Robert
Defect Greek King, Martin
Lutherctx, MK
=
«[ ] [+]
[ Pg1 S2¢ 1 1423 | a nl  Cold [ 1o | | [HUM |



#%+ (vld10} John F. Kennedy {vfld}

fewl DMVBICTZ, Viewer?ACT, [device AVIVideo][stdcontrol][caption Yoo "Wateh a
movie' movies\kennedy. avi}

John F. Kennedy was the 25th President of the Tnited States. He was inavgurated in January
1961 and was assassmated i Dallas, Texas on MNovermber 22, 1963, He was the first Foman
Catholic to be elected President. The Berlin Wall was bailt dunng hiz administration, i 1961




MivrosoltWurd - CHAP12_1.RTF -

Ak | e

a| File BEdil View Insert Format  lools lable Window Help

CEE LaE [ EaE B=ERE parE aeE

[Normal | 3] Times New Nonen |[2] 12 [2] [(DIZ] el [E1=1=1=] (2 0] 2] 6] ]
L | |1 |2 3 B |F IR

L]
1 1 - 1 1 1 : 1
= L <L L -+ < = L Y 3 L L L +

#4+ 1l 07 Saturnd ed;

{ewl MV 2LEZ ViewetBmp 2, nomse macto="0WCTIZ arrrandlhrwndContess, qohF ath.
“zaturnway', plap '] [caption— "o bClols on proture to plaw muae” dither]lcatuen, b}

2zrarn s the szth plasst from the sun ITthas & dameter of 72,200 mil=s and revolves arcund the
ol once every 295 wears. 1t 15 baorots tor the senes of tan, Hab rines that carrcls it

#4+ “2fld"0) Sun (vl

few] LAV 2MEE, ViewerDmp?, mazre="TAC0TC onumand rend O onzeat, gz, solar wav!,
Talep ] [eaption="wc bilicl: on picture to play tnasie ' dithes]lzolar b

The Sunis & star, rast hke most of tao ty pointz o2 dght vou zcc m the sky, Tac piotare showsa |
rhenamenor ~alled so'ar prominsnceschs promrtences cleady The aun is the rentzs of o solar
gystomm, providmg bebt and heat to the plancts

[ Pg1 S2¢ 1 1423 | a nl  Cold [ 1o | | [HUM | |



File Edil. Buokmark Help

Contcrtz | Index |Go Back || Hitary | Scarch R
R
Viewer Help Contents J
b
— W — Hewigatrc in Viswer
—@— Finding rformatan
=
________ Frinling and Copwing
Lo
— t@ — Bookmares end Annotations
=
Batons and Menus
— — Cancrnling Snnd 399451430
—1 4
1 [

|



— Huw-Tu 12.1 Dernu | ¥
kile LEdt Hookmark Help

Cortents [Go Back | Histore [ Search | <« | 52 | copy _

Sun

Click un picvture W play music

Thie St 4 star, Jusl Mee sl of e Loy pores ol hehl you see n be sk, The pacluce shows a

and heat tn ta= planets



rSearch by Word

| oK
| 3
| Cancel
5 h In:
s Taopic Groupa:
@ All Topic Gioups Bmeriran Hizbnry
1 Selecled | opic Lroups B Animals | Options._.
[=] Space -
C! Current Topic Only ] Music | Hinls...
| <4 Scarch by Word
rsearch by Lategoip
Cat=gorny: K.eyward:
Jutiec:s *[H] + | Add R ow I
Cl=pha: L | Remure Buw I
Gurar
Harze
dehn T Eenredy
Maitin _uter King
Fiann
Rayline L)

Pravious Search I




= Hotzpot Editor - [MEGFAD.BMF] il

=| File Edit Y¥inmluw Help =
| For || meEnT
Tae e

e o
| iy " Binding

Conteut String: | |

! I 2] Attibute: Invisible [%]
“hore

| ------------ == Hotzpat 14d: |Hutsnﬂt? |
AreeeCd ] Wil Gl " Dounding Dax

Praurnad Yoar €3l [T Left 10 Top:[169 | | i |
“ Mezzags il BiﬂhtM B-“"““I&I

S

Signed

1 |[ c:Hobzpat ¥] [Inweiziolzcdump: [T op:1EA Boblon 221 Lak: s Rich: 223]




How-To 12.2 Demo

Eunh:nlsl Inden Iﬁu Dack




[CONFIG] - Configuration Script

Configuration Script:

FegizterRoutine] ' mvbmp”, "CopeBmp"’, "w=U55"
ReqisterRautine] mvmci2”’, "MCICammand”’, "LU555"]
ReqgisterR outing mvftzui2”, "SearchDialog®, "15U"]
RegizterR outing] mmeyztem’, 'wavelutGetMumbDewvs', "u=']
ReqisterBouting mmeysten’, “sndPlanSound’, "5u']
ReqisterRoutine user’, "MeszageBox’, "US5U]

Edit Command. Paste Command. ..




Mivrosolt'Wurd - CHAP12_2.RTF -
a| File BEdil View Insert Format  lools lable Window Help

EEEIRNEEE BEEEEE R EEEREEFEENEEE]
[Normal | 2] Times New Nonen |[2] [0 [3] [(l2]ul [E1=1=1=] (2 0] 2] 8] 0]
|1 |2 3 B |E IR

1L 1 1 1 1 1 : 1

1 ; - Iy ™ ke Iy - ™ o . o - ,1 ﬂ
aAnswering the Telephone

Ak | e

Wil b wou ik Tk

: MYBME:
Huarel o srdersland? I you were calmy, Wiewa Bz,
howr wronld you teel abeout a conmpany that lzesktep brap)

b seineone woswernn 1z plore Gl wayy
Do e weans be talc wath tus perssad Weuld
w1 sl a person who ves s Trpressia

Footrote: Closc

#rr mreating

FThenEl: o wemeCut et TurC ovs”™, "sndayEornd( badans way', ",
"TescaopPexlanc App, 7o system does et agppor 2ound’, TSRECE' 1Y)
fom instructions

IPMU:IDl_'uulJP:th, "Ll curdrol all=C ooalruls', 0
Fo T I |

RN [+]

[ Pg1 S2¢ 1 14 | & _n Col 1 [ 1o | | [HUM | |

| 1+ Bl

l+]




#{evor. MV INP2, ViswerBmp2, [marre="TumpTierhFath, “rte_intre""] lintrer brep)

.

{2wc MVEMEZ, ViewerEraa2, [maco="TumpID qekFath, ‘et nazics'] Mhesicen biop)
Vowe MOWVEME -, ViewerEraa2, [macso="TunpITn'qekPata, ot as.e""] laocn bmp )

{zwe MVENME L, ViewetBran 2, [macre="JunpllhqekPata, ohz_meszage’)' ] nsgn. brog}




Haw To 12, cCmo

You Are the Campany!

Tﬂ‘]

m e e

F Fevlzoea wos o salls Doz e Lool looe, s s wier emns bem Br s iogpee sdon 2 Ue cozagnoy, o
’%} Ire ”'IH B e H 1 :‘I II.I n .< i’llll::ll.. I'Illn.‘r' TR Ll III'II' widy :]'I”‘.' F1 . |:--'rr|: IFNES i 'HT J'IH '.JI'II:'IH
Mz v e s

[ore to e,

DCURETESLE b= polie, e - e

SHAEFF_ - 5 dezadby a1z alwrsyis plossos

JCIMCDTHT - copsowe calsvs ol Eaudle due recuest propets
JLLAT. - be sare £2x callervnderszands won







Anyone who has used Windows for a while is probably familiar with the
normal procedure for installing software. You insert the first disk in its drive,
and use the Program Manager to run A:\\SETUP (or B:\SETUP). You respond
to a few dialog boxes confirming the names of directories to be used and
components to be installed, and then the files are copied. You are prompted to
insert additional disks as required.

The Setup program used by most of these applications was originally
developed by Microsoft to install its own applications. The Setup program is
now available in the form of a toolkit in the Software Development Kit
(SDK) for the use of developers. A limited version is distributed with Viewer.
This is designed—Ilike Viewer itself—to be used without extensive technical
knowledge. If you need to perform functions that aren’t included in the
Viewer version, you should purchase the SDK. Other installation packages
are also available through mail-order companies and retail stores that cater to
developers. Some programming skills may be needed to use these more
advanced packages.

This appendix provides an overview of the
{vfld137438953482} Setup {v{ld-9223356093936173056} toolkit included
with Viewer, and the additional features available in the full toolkit. This is
not complete documentation for either version. The Viewer Authoring Guide
and the SDK’s Setup Toolkit for Windows provide more information. You can
get more assistance with either version of Setup through CompuServe, as
described in appendix C.



How Does Setup Work?

Setup can perform a number of common functions, including:
u Copy application files to new or existing directories
u Determine if there is enough disk space available to hold the
selected files
u Check file dates and version numbers to avoid copying older
versions of files over newer ones
Copy system files to the Windows and Windows System
directories
Install new fonts or drivers
Create a new Program Manager group and items
Update the WIN.INI and SYSTEM.INI files
Create or update private INI files
Exit and restart Windows if necessary to activate new system files,
fonts, or drivers

C:

c:cCc:CcC:-C:C:

The Setup operation is controlled by a program that must be written using
Setup’s language, which is very similar to Basic. This can be as simple as a
script or as complicated as an advanced program. Most of the installation
functions are controlled through reasonably simple programming, using
standard program commands that are provided with Setup. Some operations
require complex programming within Setup or in external commands in
DLLs. An installation script is provided in the version of Setup included with
Viewer.

Two files control most of Setup’s operations. The INF file contains
information about the files being installed and the disks containing those
files, and the MST file contains the Setup script. The versions of these files
included with Viewer are named TITLE.INF and TITLE.MST. The
comparable files created by the Setup included with the SDK are named
SETUP.INF and SETUP.MST.

The MST file script includes commands that read the information
contained in the INF file, and other commands that perform the desired
functions. The commands can execute Windows API commands, execute
external commands written specially for the installation operation, display
dialog boxes that let the user select desired installation options, and perform
other functions needed to produce the desired results.

Prepare Setup for your application by copying the standard INF and MST
files into a directory, and customizing them as appropriate for your
application. Then create a directory structure that represents the distribution
disks, and copy the Setup and application files into the proper directories.
You can test your design by executing Setup from these directories, or by
copying the files to the individual disks and running Setup from those disks.

Setup creates a temporary directory on the drive that contains the active
Windows directory, and copies the files needed to perform the installation
into that directory. The MST program is then executed, which usually verifies
the available disk space, determines the target directory name, and copies the
files to be installed. A dialog box shows the progress as the files are copied,
and various bitmaps can be displayed in the dialog box as the installation
proceeds.



The INF file is arranged much like an MVP or INI file—it has section
headings enclosed in brackets followed by detail entries. The TITLE.INF file
has four sections: Source Media Descriptions describes the distribution disk,
Default File Settings sets the default values for installation options, System
Files describes Viewer’s runtime files, and Installed Title Files describes files
created by the author. Entries in the sections that describe files consist of one
line per file, containing a series of fields separated by commas. The standard
definition in TITLE.INF is as follows:

disc_number.filename,,, file date,,..,,.,,file_size,,,,file version,

All commas must be included, even for unused fields. Viewer’s Authoring
Guide describes only a few of the fields that can be used. The full description
is shown in Table A-1. The fields with names that have STF _ prefixes contain
default values that are set in the INF file.

Table A—1. INF File Definition Fields.
Item Value Description
1 - Disc Number integer Number of the disk containing this file. Use 1 for all files on
a CD-ROM.
2 - Filename Name of the file to be copied, including relative path from
SETUP.EXE.
3 - Append <empty> Overwrite any existing file.
filename Append to specified file. Can’t use with Rename, Root, or
Backup.
4 - Backup <empty> Use default value in STF_ BACKUP.
* Rename old file with BAK extension.
filename Rename old file to specified name.
5 - Copy <empty> Use default value in STF_COPY.
COPY Copy this file.
ICOPY Don’t copy this file.
6 - Date <empty> Use default.
YYYY-MM-DDD  Set file date to specified date.
7 - Decompress ~ <empty> Use default value in STF. DECOMPRESS.
DECOMPRESS Decompress the file.
'DECOMPRESS Don’t decompress the file.
8 - Destination ~ <empty> Unsupported—must be empty.
9 - Overwrite <empty> Use default value in STF_ OVERWRITE.
ALWAYS Always replace existing file with the same name.
NEVER Never replace an existing file.
OLDER Only replace existing file with lower version number or older
date.

UNPROTECTED Only replace file with Write attribute.

10 - ReadOnly  <empty> Use default value in STF._ READONLY.

11 - Remove

READONLY Set read—only file attribute.
'READONLY  Don’t set attribute.
<empty> Copy the file using other properties (do not remove).



REMOVE Remove the file from hard drive (do not copy).

'REMOVE Copy the file using other properties (do not remove).
12 - Rename <empty> Leave file name unchanged.
filename Rename file to specified name. This can include a
subdirectory name.
13 - Root <empty> Use default value in STF_ ROOT.
ROOT Strip subdirectories from file name.
'ROOT Leave subdirectories in file name.
14 - SetTimeStamp <empty> Use default value in STF_SETTIME.
SETTIME Use the Date property.
ISETTIME Use the current system time.
15 - Shared <empty> Do not treat file as shared.
SHARED An existing version of file may be in use during installation.
ISHARED Do not treat file as shared.
16 - Size integer Uncompressed size of file in bytes.
17 - System <empty> This is not a system file.
SYSTEM System file; will be replaced during system restart.
ISYSTEM This is not a system file.
18 - TimeToCopy <empty> Use default value in STF_TIME.
integer Progress indicator increment.
19 - Reserved <empty> Leave this field empty.
20 - Version <empty> No version number.
Version One to four integers separated by periods.
21 - Vital <empty> Use default value in STF_VITAL.
VITAL Installation fails if file cannot be installed.

IVITAL Installation can continue.




Setup in Viewer
This version of Setup uses a simplified script. It is designed specifically to
install Viewer applications from a CD-ROM without requiring extensive
technical or programming knowledge. The MST file includes comments that
show you the changes needed to

U  Install multiple MVB files at once

Install Help MVB files

Install custom DLL files

Install custom fonts

Create multiple Program Manager items

Display custom icons for Program Manager items

Install Video for Windows runtime files

CoCr G e

The script includes instructions for other options as well—you should read
it. It does not show you how to replace the Viewer Title Setup banner (this
requires C programming), or to use diskettes or compression (this requires
the full Setup toolkit from the SDK).

A complete sample Viewer installation can be found on the enclosed CD-
ROM disk in the MVSAMPLE\GALLERY\IMAGE directory. This includes
all files needed to install the Gallery sample application, including updated
INF and MST files.

English, French, and German versions of the Setup files are included (in
the USA, FRN, and GER subdirectories within MVSAMPLE\PROGSAMP\
SETUP), as well as corresponding versions of the Viewer runtime files (in
the MVSYSUSA, MVSYSFRN, and MVSYSGER subdirectories). Note that
some error messages are hard—coded into the Setup programs, and are only
displayed in English.

The MST script includes commands to update or create the VIEWER.INI
file in the user’s Windows directory. The Files section of the INI file includes
a line for each MVB or DLL file. These entries are used by Viewer to locate
files if they are not found in the current, Windows, or Windows System
directories, or directories in the Path. These entries also include a one-line
message (of less than 50 characters) that is displayed if the file cannot be
located. This is especially useful for MVB files that are read from CD—-ROM
disks. The format of these entries is simply the MVB filename, an equals
sign, the path, a comma, and the error message. An example of such an entry
is the following:

VIEWERHT. MVB=H:\VIEWERHT)\, Please insert the Viewer How—To
disk

The Viewer Setup expects your MVB file to remain on the CD-ROM. If
you plan to copy it to the hard drive, the code that creates the VIEWER.INI
entry must be changed. To do this, follow these steps:

1. Locate the line that reads GLOBAL CUIDLLS. Insert a new line
immediately after that reads GLOBAL szTitleDir$.
2. Locate the SUB ModifyViewerIni STATIC entry.

Locate a comment that starts Now we have to register the MVB file.

98]

4. In the command following that comment, replace the portion that reads
GetSymbolValue("STF _SRCDIR") with szTitleDir$. This inserts the



target drive and directory in the INI entry instead of the source drive and
directory.

Include an entry for the MVB file in the Installed Title Files section of
the TITLE.INF file. This causes the file to be copied.



Setup in the SDK
The full version of Setup includes two programs that help create the INF file
and the directories that represent the distribution disks. These programs
compress files, split files that are too large to fit on a single disk, and lay out
which files should be on which distribution disks. They let you control all of
the options recorded in the INF file through standard dialog box features such
as check boxes and radio buttons. The full Setup also provides the complete
set of functions that can be executed in the MST script.

Two different compression systems are available—external and internal.
Most applications use the standard external compression, which uses an
external program (LZEXPAND.DLL) to decompress files. This lets users
decompress and install individual files manually if necessary. However,
external compression is very inefficient for large files that must be split
between disks. The file is first divided into parts the size of a distribution
disk, and then compressed. The space freed up by compression is not
automatically used for other files, which means it is usually wasted. This
makes the program call for unnecessary extra distribution diskettes.

Files compressed with internal compression can only be decompressed by
the Setup program. Files that use internal compression are laid out much
more efficiently on the diskettes, with far less wasted space. Internal
compression cannot be used for SETUP.EXE, SETUP.LST, or for driver files
that must be installed through the Control Panel.



Tips and Tricks

=

The Setup Toolkit is very powerful, but poorly documented. As a
result, problems are common. If you cannot avoid these problems
by using the prepared script supplied with Viewer, you can get
assistance through the WINSDK forum in

{vfld137438953482} CompuServe {v{ld4926370438184960}. This
is described in Appendix C.

Setup includes a function,

{vfld137438953484} GetCopyListCost {vfld237818153706245324
8}, that determines the disk space required by the installation. It
allows for disk cluster sizes and the difference in sizes of files
being replaced, and excludes files that will not be copied based on
the Overwrite option. However, it does not handle split files
properly. More details are available through Compuserve by
entering G MSKB to select the Microsoft Knowledge Base, then
following the prompts to select document Q88749. Download this
document to read offline.

The GetFreeSpaceForDrive and GetCopyListCost functions return
sizes measured in bytes. Given the gigabyte drives now found on
some PCs, be prepared for very large numbers!

If your files are installed on a system using disk
{vfld137438953482} compression {vfld280933810831360} (such
as Stacker or SuperStor), the free space reported assumes that your
files can be compressed to the same degree (about 50 percent) as
all other files. If you are installing large files that cannot be
compressed effectively (such as AVI movies), this could report that
there is sufficient space even though there isn’t really enough. The
best solution, if you have such files, is to warn your users of this
possibility.

To change the Microsoft Setup logo, first create a monochrome
bitmap using white for the text or image and black where the blue
background should show through. Then change DIALOGS.RC in
the BLDCUI directory to use your file instead of BITMAP.DIB
and recompile MSCUISTF.DLL with the modified resource file.
Be sure to use copies of these files in a different directory to avoid
changing the standard files.

The blue background cannot be changed—it is hard—coded into the
program.

To recompile MSCUISTF.DLL using Microsoft Visual C++, ignore
the makefile in the BLDCUI directory. Instead, create a new
project in VC++. Choose Project from the Options menu, then
select Windows DLL as the project type, and choose Release as the
build mode. Both of these project options are critical. Accept all
defaults for compiler options. Add the following files to the
project: DLGPROCS.C, MSCUISTF.DEF, MSCOMSTF.LIB,
MSSHLSTEF.LIB, MSUILSTF.LIB, and DIALGS.RC. You can
then recompile successfully.

If you have a hard—to—find error in your Setup script, one way to
pin it down is by inserting pause statements at strategic points. The
syntax is PAUSE string$, so you could use a call like PAUSE



"Directory " + szTitleDir$. The string is displayed in a message
box with an OK button.

=  The date and time stamps of an installed file are determined as
follows:
If the SETTIME option is applied, the file date is taken from the
file on the distribution disk, and the time is set to 12:00 a.m.
If the !SETTIME and DECOMPRESS options are applied and
external compression is specified, then the file date and time from
the distribution disk are used. This is the only way to control the
file’s time stamp. If internal compression is used, the file reflects
the time it is copied.
If the |SETTIME and |DECOMPRESS options are applied, the file
shows the date and time it is copied from the distribution disk.
Note that you can flag uncompressed files to be decompressed. It
doesn’t hurt.

= Ifyour script executes CreateProgmanltem with cmo% set to
cmoOverwrite and szOther$ containing any value, that command
creates a new item instead of replacing the existing one. This is a
known bug in Setup. This means you can’t use cmoOverwrite
while specifying an icon, startup directory, etcetera. Assistance can
be obtained through the WINSDK forum on CompuServe.

=  The Setup documentation states that the /W option for the Dsklayt2
program (part of the full SDK toolkit) can be used without a disk
number. This is incorrect—a disk number is required.

=  If'you want to maximize the Setup window, add the following

instructions to your MST file:
CONST WS VISIBLE = &H10000000
CONST WS BORDER = &H00800000
CONST WS CLIPCHILDREN = &H02000000
CONST GWL STYLE = -16
CONST SW_SHOWMAXIMIZED = 3

DECLARE FUNCTION
{vfld137438953483}ShowWindow{vfld3131967461654528} LIB
"user.exe" (hWnd%, iShow%) AS INTEGER

DECLARE FUNCTION {vfld137438953483}SetWindowlLong{vfld-
Egﬁé521606949175296} LIB "user.exe" (hWnd%, offset%, style&) AS

hWnd% = HwndFrame()

i& = SetWindowLong(hWnd%, GWL STYLE,

WS VISIBLE+WS BORDER+WS CLIPCHILDREN)

j% = ShowWindow(hWnd%, SW_SHOWMAXIMIZED)

If the calls are made at the beginning of the script there should be
only a quick flicker as the window size and border are changed.

=  The Dsklayt2 program (part of the full Setup toolkit) supports an
option, /V, that is missing from the documentation. This causes the
program to produce detailed progress messages that can be
invaluable for debugging.

=  Ifyou want to place your files in directories in the distribution
diskettes, change the file name field entries in the INF file to the
form DIRECTORY\FILENAME, for example, SYSTEM\
TSTOOLS.DLL. This must be done manually—the Dsklayt
program does not support this. You may be able to make these



changes by using Word’s search and replace function. Use the
ROQOT option if the directories should not be created on the target
drive.

The recommended way to create files in multiple directories is to
put the files for each directory in a separate section in the INF file.
Then, in the MST file, use AddSectionFilesToCopyList for each
section and set the szDest$ parameter to the desired directory
name. Use CopyFilesInCopyList to create the directory and copy
the files.

Be sure to read the README.WRI, TESTDRVR HLP, and
FILEDESC.WRI files included with the full Setup toolkit. They
contain information that is extremely important.






The CD-ROM enclosed with this book is organized into more than 300
directories containing more than 1700 files. The files contain nearly 150
megabytes of information—enough to fill almost 100 3.5—inch diskettes!
This appendix describes the contents of each directory on the disk, and also
describes Viewer extensions, provided by other developers, included on the
disk. Instructions for installing the files on your computer are found in the
Quick Start section at the front of this book. The files fall into four major
categories:

U A special version of the Microsoft Viewer Publishing Toolkit

U The source and compiled files that are used or created by each

How—To in this book
U The complete text of this book, as a Viewer application
U Software that extends the capabilities of Viewer

This great mass of material is carefully organized to help you find any files
you need. The directory structure is shown in Table B—1. There are two major
groups of directories—the Viewer Toolkit itself, and the material related to
this book. The Toolkit occupies the root directory and the first 14 top—level
directories listed. The material related to this book is grouped in suitable
subdirectories under the VIEWERHT directory. To avoid unnecessary
duplication, the subdirectories for the individual How—To sections are
represented by a single typical entry. In particular, the directories for chapters
3 through 12 are represented by the single CHAPx entry, and the almost 70
individual sections are represented by the single CHAPx_ y entry. Each
chapter’s directory contains the subdirectories for that chapter’s sections.
Each section’s subdirectory contains the project files and four standard
subdirectories, as shown in Table B-1.

Table B-1 Directory Structure of Viewer How-To CD

\ Root directory—Viewer installation
files
1 GRPHFLT Graphic import filter files
1 MVHLPFRN Viewer Help MVB and project files
(French )
| 1 GRAPHICS Graphics source files
| 1 TEXT Text source files
1 MVHLPGER Viewer Help MVB and project files
(German )
| 1 GRAPHICS Graphics source files
| 1 TEXT Text source files
1 MVHLPUSA Viewer Help MVB and project files
(English)
| 1 GRAPHICS Graphics source files
| 1 TEXT Text source files
1 MVSAMPLE Sample files:
| 1 GALLERY Gallery MVB and project files
| | 1 GRAPHICS Graphics source files
| | 1 IMAGE Sample Setup directory



| 1 SOUNDS

|
| | 1 TEXT
| | 1 VIDEO
| 1 PROGSAMP
| | 1 EPLIST
| | 1 KATASRCH
| | 1 SETUP
| | | 1 FRN
| | | | 1
BLDCUI
| | | 1 GER
| | | | 1
BLDCUI
| | | 1 USA
| | | | 1
BLDCUI
| 1 USA
| | 1 MEDIA
| | 1 PCPICS
| | 1 SONYHELP
| | | 1 HELPPICS
| | 1 SONYPICS
| | 1 TEXT
1 MVSONY
1 MVSYSFRN
1 MVSYSGER
1 MVSYSUSA
1 MVTOOLS
1 SYSTEM
1 TUTORIAL
1 WINDOWS
1 XA
1 VIEWERHT
| 1 ADDONS
| | 1 MVVBX
| | 1 PUSH
| | 1 SCORE
| | 1 VBCOMM2
| | 1 VLAUNCH
| | 1 TSTOOLS
| 1 HOWTOS
| | 1 CHAPx
| | | 1 CHAPx y
| | | | 1
MOVIES
| | | | 1

PICTURES

Sound source files
Text source files
Video source files
Programming samples
Embedded window DLL
Custom search function
Setup directories
Setup files (French)
Setup DLL source
(French)
Setup files (German)
Setup DLL source
(German)
Setup files (English)
Setup DLL source
(English)
USA Tour MVB and project files
Sound and movie files
Picture files (Windows)
Help text file (Sony)
Help picture files (Sony)
Picture files (Sony)
Text files
Sony authoring files
Viewer runtime files (French)
Viewer runtime files (German)
Viewer runtime files (English)
Viewer authoring and support files
Files installed in Windows\System
directory
Files for Viewer tutorial
Files installed in Windows directory
Files for Sony application
Material related to this book
Viewer extensions:
Viewer Visual Basic Custom
Control (VBX)
Viewer Button command
Question Scoring command
Viewer Commander
Viewer 1.0/2.0 Launcher utility
TSTools DLL
How-To section files
Directories for chapter x (CHAP3—
CHAP12)
Project files for chapter x section y
Movie and animation files

Picture (BMP and SHG) files



| | | | 1 Wave and MIDI files

SOUNDS
| | | | 1 TEXT Text (RTF) files
| 1 SYSTEM Files installed in Windows\System
directory

This CD contains a special version of the Microsoft Viewer Publishing
Toolkit, with a limited compiler that was prepared for this book. This version
of the compiler restricts projects to no more than 25 topics, and adds the
words Demo Version to the title bar of the compiled applications. All
supporting programs, demonstrations, help files, and other material in the
commercial toolkit are included unaltered. The root directory also contains
the setup program and files used to install Viewer.

The VIEWERHT directory is divided into three subdirectories. The
ADDONS subdirectory contains the extensions to Viewer—each in its own
subdirectory. The HOWTOS subdirectory contains one directory for each
chapter in the book—each contains one subdirectory for each How—To
section in that chapter. Each of these How—To subdirectories contains all of
the files used or created by the corresponding section, including the compiled
result. The subdirectory for each How—To uses the standard structure, with
subdirectories for movies, pictures, sounds, and text files. All of these
subdirectories are created, even if some of them are not used. The SYSTEM
subdirectory contains the files that are installed in the Windows\System
directory. This includes Windows MCI drivers required by How—To
demonstrations and copies of the Viewer extension executable programs. The
VIEWERHT directory also contains the contents of this book in the form of a
Viewer application (VIEWERHT.MVB), and the setup program and files
used to install these applications.

Viewer Extensions (Add-Ons)
Each extension is located in its own subdirectory, containing the executable
program, documentation files, and a demonstration if appropriate. Refer to
these files for more information. The executable files for these extensions are
installed in your Windows\System directory as part of installing the files for
this book. The other files may be copied onto your hard drive from the CD-
ROM if desired.

These extensions were created by Viewer developers, who made them
available through this book in the hopes of fostering development with
Multimedia Viewer. Unless stated otherwise, you must obtain a license to use
any of these extensions in a commercial application or if you want support.
They may be used for development or for in—house applications without a
license. Please contact the appropriate developer, at the address shown in
appendix D, for licensing information. These developers also have other
functions available.

Viewer Custom Control Lets Visual Basic and Microsoft Visual C++ programs
respond to Viewer events such as jumps or scrolling,
obtain information about Viewer apps that are running,



Button command

Question scoring command

Viewer Commander

Viewer Launcher utility

and read Baggage files. This also simplifies issuing
commands to a Viewer application from a program.
Includes MVSPY demo program, which can monitor the
operation of any Viewer application. The demo requires
the CMDIALOG.VBX to compile. You can examine the
code by ignoring error messages while loading the
project into VB or VC++. Developed and copyrighted by
Keyboard Publishing.

Lets you define a special hot spot within any topic. It
uses two bitmaps to represent normal and depressed
button images, or two alternate toggled states (like a
light switch). Note: this is an unsupported and unfinished
product—use it at your own risk. A commercial version
is being developed. Developed and copyrighted by
Keyboard Publishing.

Lets you calculate and display the user’s score
(percentage of correct answers) on multiple choice
questions. Developed and copyrighted by Keyboard
Publishing.

Lets you execute Viewer commands (within a running
application) from a command line or from a script file.
This lets you modify parts of your application without
recompiling. Developed and copyrighted by Keyboard
Publishing.

Executes the correct version of Viewer—1.0 or 2.0—for
an application. This may be valuable if users are still
using Viewer 1.0 applications. A license is not required,
and a demonstration is not included. Developed and
copyrighted by Keyboard Publishing.



TSTools DLL

Provides commands that let you do the following:

(a) Create a button in an embedded pane within any
topic, which executes Viewer commands when clicked.
You can specify the button size, and a caption in selected
font, size, and style.

(b) Call WinHelp for a specified file and context string.
(c) Create a custom dialog box with up to three lines of
text. This can serve as an About box, for example.

(d) Execute Windows Write and copy the current topic
into Write. Additional calls copy other topics into the
same instance of Write.

The following functions in this DLL are included and
demonstrated, but are not documented here or licensed
for use:

(e) Execute a command after an MCI command
completes, such as jumping to a new topic after a sound
or video completes.

(f) Execute a command after a specified delay. A series
of delays and associated commands can be defined. This
can be used to create a self—running demo.

Complete documentation and additional functions are
available by licensing these extensions from the
developer. Developed and copyrighted by TouchSend
Management Consulting.






Since Viewer is a very sophisticated and powerful system, you might want to
ask for some help. You might have questions about technical issues, design
issues, or any other aspect. You might be stuck, and want advice from an
experienced Viewer author. You might even find a bug in one of the
programs, and want to report it or obtain a corrected version. You’ll be happy
to know that every bit of this is readily available, through a service known as
CompuServe.

What Is CompuServe?
CompuServe is an online service operated by a private company. It provides
facilities for users to communicate with each other through public messages
that all users can read, and private messages that can only be read by the
addressee. It also allows files to be loaded into public libraries, and for those
files to be copied to your computer upon request.

CompuServe is a huge operation. It has many users throughout the world,
with widely diverse interests. It is also used by many companies, including
Microsoft, as a means of providing support to their customers. Obviously,
you don’t want to sift through thousands of messages looking for the ones
that interest you. CompuServe keeps the system usable by dividing it into
many separate areas known as forums, which are further divided into
sections. Each forum and section is dedicated to a particular area of interest,
so you can look at just the messages and files in the sections that interest you.
Microsoft operates many forums to provide assistance to its customers for all
of its programs.

To use CompuServe, you need a modem and a communications program.
The modem is connected to your telephone line, which permits it to call the
nearest CompuServe location. The program controls the modem and all of
the technical communications details. You also need to join CompuServe and
get your own membership number and password.

CompuServe charges you a fee for every minute that you are connected to
its service. You also have to pay for the phone call, but this will probably be a
local call if you live in a city. Several computer programs have been
developed that help you minimize these costs by reducing the time you need
to be connected to CompuServe to do what you want. These programs will
read messages you select at high speed, and record them on your computer
for you to read when you are no longer connected to the service. You can
then write replies or new messages at your leisure, and the program will
transmit them at high speed when you are ready. You can buy a special
CompuServe kit, containing one of these programs and complete
instructions, at most computer software stores and bookstores. These kits cost
about $25, and provide a $25 credit toward your CompuServe bill. Other
access programs are available as shareware from CompuServe’s libraries.
These are programs you can try out before paying the license fees.

CompuServe charges $8.95 per month for basic services, plus connect—
time rates based on the speed of your modem connection: speeds up to 2400
bps cost 8 cents per minute and speeds up to 14,400 bps cost 16 cents per
minute. Some special services have additional charges.

If you are preparing to develop applications using Viewer you should not
hesitate to join CompuServe. It provides an invaluable source of information
and assistance.



The Viewer Section
Among the many CompuServe forums and sections operated by Microsoft is
a section dedicated to Viewer—Section 6 of the Windows Multimedia
(WinMM) forum. Microsoft representatives knowledgeable about Viewer are
available here to provide assistance. If necessary, they can refer questions to
the programmers who developed and maintain Viewer. Many experienced
Viewer authors also monitor the messages here, and will gladly help you.
This is also where Microsoft provides corrected versions of Viewer
programs.

Microsoft and some independent developers have loaded a number of files
into the library for this section. These include external functions that enhance
the abilities of Viewer, sample programs for performing functions that have
been of interest to many people, and other contributions. You can copy any of
these to your computer for just the cost of the connect time. Some of these
programs might require paying a license fee if you want to use them in a
commercial application, or might be shareware programs that you can try
before paying a license fee. Any license requirements are normally clear in
the file description that you see before deciding to download the files.

Other CompuServe Forums and Sections
Other forums and sections that could be of particular interest to Viewer
authors include Microsoft support for Word for Windows and other Windows
applications, and forums operated by several magazines. The Setup program,
described in appendix A, is supported in Section 16 of the WinSDK forum.
There are also forums or sections operated by the major PC vendors. If you
have a problem with your computer, video board, printer, or any other related
equipment you may be able to get help here. There are literally hundreds of
other forums covering technical areas such as telecommunications, MIDI
music, and CD-ROM, and other interests ranging from travel and
motorcycles to cancer and human sexuality. There are groups for nearly every
interest, and more are formed every month.

The Microsoft Knowledge Base
Microsoft also makes available, through CompuServe, access to its database
of known problems, workarounds, technical articles, and similar information
for all of their products. This is the database used to answer most telephone
calls from its customers. You can examine this database by entering G MSKB
at a CompuServe prompt, then following the menu directions.

Other Sources of Assistance
In addition to the CompuServe service, Microsoft also markets a quarterly
subscription to its Developer Network CDs. These disks include the complete
Knowledge Base and over 100,000 pages of documentation, magazine
articles, books, sample programs, and other useful material. This service is
designed primarily to support software developers, and it is primarily
dedicated to programming issues. It includes a large volume of information



for people writing Windows Help applications, and similar material for
Viewer is likely to be included in the future. This subscription may be
ordered by calling Microsoft at (800) 759-5474 or faxing (303) 443-5080.






Now that your appetite for Viewer has been whetted, you should be all set to
go buy some software, hire some Viewer programmers, or maybe hire a
Viewer author. At least, you would if you knew where to find them.

This appendix will help you get started.

Software Packages

Microsoft Multimedia Viewer Publishing Toolkit (Viewer)
Microsoft Windows 3.1 (Windows)

Microsoft Windows Software Development Kit (SDK)
Microsoft Word for Windows (Word)

NOTE: Many of these packages are also available in various upgrade and
combination offers. The SDK is also included with some compiler packages.
Word and Windows are readily available through local software stores, mail
order distributors, and other sources.

Microsoft Corp
Microsoft developed these packages. They sell only for full retail price.
Contact:

(800) 227-4679 (or local Microsoft office outside the United States)

Programmer’s Connection
A mail-order retailer that emphasizes supporting developers.
Contact:

7249 Whipple Avenue N.W.

North Canton, OH 44720-7143

Telephone: (800) 336—1166 or (216) 494-8715

Fax: (216) 494-5260

Viewer Professional Services
The companies and individuals listed below were active members of the beta
test team for Viewer 2.0. They can assist with consulting, contract
programming, training, and authoring services. These and other sources of
assistance can be reached through the Viewer section of CompuServe’s
WinMM forum.

Computer Office Procedures
Developer of a DLL that indexes French verbs by their root form, regardless
of the sex and tense of the verb in the text, and author of Viewer applications
in both French and English. The only active member of the Viewer beta test
team in France.
Contact:

Robert Hester



1 rue des Mouttes

31750 Escalquens, FRANCE
Telephone: (33) 61 81 19 27
Fax:  (33) 61520544
CompuServe: 100010,2361

Keyboard Publishing
An electronic book publishing company specializing in multimedia in
Windows and Macintosh systems.
Contact:
482 Norristown Road, Suite 111
Blue Bell, PA 19422
Telephone: (800) 945-4551 or (215) 832—-0945
Fax: (215) 832-0948
CompuServe: 71151,253

Stephen Pruitt
Author of this book, author of Viewer and WinHelp applications, and
consultant assisting in Viewer and WinHelp authoring.
Contact:
through Waite Group Press, or
CompuServe: 70244,365

TouchSend Management Consulting Inc.
A company that specializes in custom programming to create Viewer tools,
designing systems to convert data that needs frequent updating (such as
catalogs) into Viewer format, and consulting and training in Viewer
authoring. Jeff is internationally recognized as one of the leading experts in
the design and implementation of extensions for Windows Multimedia
Viewer and WinHelp.
Contact:

Jeff Kovitz

1904 Chatsworth Way

Tallahassee, FL 32308

Telephone: (904) 668—6180

CompuServe: 76064,3410

Clay VerValen
Former Product Manager for Multimedia Viewer and Interactive TV. Clay is
available to consult on all phases of multimedia title development.
Contact:
CompuServe: 72070,2056

Other Sources

Green Vine MultiMedia Studios

Green Vine has a vast library of original music in both MIDI and Wave file
formats that can be licensed for royalty—free commercial use. They supplied
the MIDI files used on the enclosed CD.



Contact:
One Gadsden Station
Havana, FL 32333
Telephone: (904) 574-3400

Altura Software, Inc.
Developer of software to compile and run Viewer titles on Macintosh
computers. Also offers a similar package for Windows Help files and
libraries that assist in porting applications in either direction between
Windows and Macintosh environments.
Contact:

510 Lighthouse Avenue, Suite 5

Pacific Grove, CA 93950

Telephone: (408) 655-8005

Fax:  (408) 655-9663






